• 제목/요약/키워드: rheological parameters

검색결과 199건 처리시간 0.025초

합성조건에 따른 Polyacrylamide 수화 겔의 흐름변성 성질 (Thixotropic Properties of Polyacrylamide Hydrogels with Various Synthetic Conditions)

  • 김남정
    • 대한화학회지
    • /
    • 제50권6호
    • /
    • pp.447-453
    • /
    • 2006
  • 수화 겔의 유변성질에 있어서 합성 조건과 수화 물 양의 영향이 연구되었다. cone-plate 레오메타를 사용하여 polyacrylamide 수화 겔의 비 뉴톤 유동 곡선을 얻었다. 이렇게 얻은 유동곡선에 유동에 대한 비뉴톤식을 적용하여 유변 파라메타를 계산하여 얻었다. polyacrylamide 수화 겔은 전단속도가 증가함에 따라 구조가 약해지는 흐름변성 현상을 나타낸다. 이들 유동성질은 유동단위의 특성과 유동 분절사이의 상호 관계에 의해서 나타나는 물질적인 성질이다.

리올러지 모델을 이용한 열적 기계적 변형 거동 모사 (A Description of Thermomechanical Behavior Using a Rheological Model)

  • 이금오;홍성구;이순복
    • 대한기계학회논문집A
    • /
    • 제30권7호
    • /
    • pp.757-764
    • /
    • 2006
  • Isothermal cyclic stress-strain deformation and thermomechanical deformation (TMD) of 429EM stainless steel were analyzed using a rheological model employing a bi-linear model. The proposed model was composed of three parameters: elastic modulus, yield stress and tangent modulus. Monotonic stress-strain curves at various temperatures were used to construct the model. The yield stress in the model was nearly same as 0.2% offset yield stress. Hardening relation factor, m, was proposed to relate cyclic hardening to kinematic hardening. Isothermal cyclic stress-strain deformation could be described well by the proposed model. The model was extended to describe TMD. The results revealed that the hi-linear thermomechanical model overestimates the experimental data under both in-phase and out-of-phase conditions in the temperature range of $350-500^{\circ}C$ and it was due to the enhanced dynamic recovery effect.

전기유동유체를 이용한 브레이크 시스템의 성능 고찰 (Performance Investigation of a Brake System Featuring Electro-Rheological Fluids)

  • Kim, G.W.;Park, W.C.;Cheong, C.C.
    • 한국정밀공학회지
    • /
    • 제12권7호
    • /
    • pp.123-130
    • /
    • 1995
  • This study presents model synthesis and performance investigation of a new brake system using electro-rheological(ER) fluids. Field-dependent Bingham properties characterized by non-zero yield stresses of the ER fluids are experimentally distilled. These properties are then incorporated with the governing equation of the proposed brake system which features design simplicity, fast response and salient controllability. After analyzing system performance with respect to design parameters such as electrode gap and length, an appropriate size of the brake is designed and fabricated. Both simulation and experimental works are undertaken in order to determine the feasibility and efficiency of the proposed brake system. The system performances are justified by evaluating field-dependent braking torques as well as braking times.

  • PDF

전기유동유체를 이용한 엔진마운트의 모델구성과 성능해석 (Model Synthesis and Performance analysis of an Engine Mount Using Electro-Rheological Fluids)

  • 최영태;김기선;최승복;정재천;전영식
    • 한국자동차공학회논문집
    • /
    • 제2권3호
    • /
    • pp.62-74
    • /
    • 1994
  • This paper addresses on the model synthesis and performance analysis of an engine mount featuring electro-rheological(ER) fluids which undergo a phase change when subjected to electric fields. A novel type of ER fluid-filled engine mount is devised and its hydraulic model is constructed. An equivalent mechanical model is subsequently obtained from the governing equation of the hydraulic model. The model parameters associated with the ER fluids are distilled from experimental investigations on the Bingham properties of the fluids. The distilled data are then incorporated into the governing model to undertake feasible work through computer simulations,. It is shown that the proposed engine mount has an inherent capability of controlling both the damping force and the resonance frequency. Other superior performance characteristics accrued from the proposed methodology are also evaluated.

  • PDF

반능동 점성감쇠를 이용한 유체댐퍼 개발에 관한 연구 (A Study on the Development of a Hydraulic Damper using Semi-Active Viscous Damping)

  • 전종균;김현식
    • 한국산학기술학회논문지
    • /
    • 제1권2호
    • /
    • pp.15-20
    • /
    • 2000
  • 본 논문에서는 교량 밑 건축구조물, 각종 기계부품의 진동문제를 보완하기 위한 방법으로서 MR유체를 이용한 댐퍼를 연구하였다. MR 유체의 특성을 이용한 댐퍼를 모델링하여, 설계도면을 기초로 MR 댐퍼를 제작하였다. 만능재료 시험기를 이용하여 주파수와 전류 및 변위를 단계적으로 변화시켜가며 성능실험을 반복적으로 수행하였다. 실험을 통하여 주파수, 전류 및 변위에 따라 댐핑 효과가 다르게 나타남을 확인할 수 있었다.

  • PDF

도토리 전분 묵의 Rheology 특성과 Tannin성분의 영향에 대하여 (Study on the Rheological Properties and Effects of Tannin components of Acorn Starch Gel)

  • 구성자
    • 대한가정학회지
    • /
    • 제23권1호
    • /
    • pp.33-47
    • /
    • 1985
  • The rheological properties of acorn starch gel were investigated in region of small and large deformation. The properties were compared with those of potato and wheat starch gel. On the physical characteristics and the effect of tannin contents of acorn starch were examined. RESULTS : 1. X-ray diffractogram of acorn starch showed C-type and its granules swelled gradully with heating. 2. Hardness, brittleness and both small and large deformation of the acorn starch gel were remarkably large, also the concentration dependence of the acorn starch gel could be recognized in small deformation and hardness. 3. The Young's modulus of Hookean body in small deformation and the rupture stress in large deformation differed obviously from the parameters of rheological properties in various gels. 4. It was found that the selling power, viscosity and rhelogical properties were affected obviously by the tannin.

  • PDF

국내 FCM교량에 사용되는 고성능 콘크리트의 크리프에 관한 유동학적 모델 (Rheological Model of Creep for FCM Bridges Made Use of HPC)

  • 김재기;이주하;윤영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.433-436
    • /
    • 2003
  • This paper proposes rheological creep and shrinkage model of FCM bridges made for HPC about 40Mpa. The proposed model separates time dependent part with characteristic material part and regards main variable as elastic modulus, which represents material characteristic and history. To find parameters of the model, we had creep, shrinkage and basic material tests about four FCM bridges. All specimens were tested with same condition, after 3days, 28days and 90days of curing. Also, exposed condition and closed condition were separately given to compare the data of each bridge. Finally, all creep data of four FCM bridges were compared to proposed rheological model and other proposed world code models, AASHTO, ACI, CEB-FIP, JSCE and etc.

  • PDF

ER 유체의 채널유동에 대한 직접수치해석 (Direct Numerical Simulation of an Electro-Rheological Channel Flow)

  • 조상호;최형권;유정열
    • 대한기계학회논문집B
    • /
    • 제28권1호
    • /
    • pp.72-80
    • /
    • 2004
  • Steady flow of an ER (electro-rheological) fluid in a two-dimensional electrode channel is studied by using FEM. Hydrodynamic interactions between the particles and the fluid are calculated by solving the Navier-Stokes equation combined with the equation of motion for each particle, where the multi-body electrostatic interaction is described by using point-dipole model. Motion of the particles in the ER fluid is elucidated in conjunction with the mechanisms of the flow resistance and the increase of viscosity. The ER effects have been studied by varying the Mason number and volume fraction of particles. These parameters have an influence on the formation of the chains resulting in the changes of the fluid velocity and the effective viscosity of ER fluids.

Prediction of Concrete Pumping Using Various Rheological Models

  • Choi, Myoung Sung;Kim, Young Jin;Kim, Jin Keun
    • International Journal of Concrete Structures and Materials
    • /
    • 제8권4호
    • /
    • pp.269-278
    • /
    • 2014
  • When concrete is being transported through a pipe, the lubrication layer is formed at the interface between concrete and the pipe wall and is the major factor facilitating concrete pumping. A possible mechanism that illustrates to the formation of the layer is the shear-induced particle migration and determining the rheological parameters is a paramount factor to simulate the concrete flow in pipe. In this study, numerical simulations considering various rheological models in the shear-induced particle migration were conducted and compared with 170 m full-scale pumping tests. It was found that the multimodal viscosity model representing concrete as a three-phase suspension consisting of cement paste, sand and gravel can accurately simulate the lubrication layer. Moreover, considering the particle shape effects of concrete constituents with increased intrinsic viscosity can more exactly predict the pipe flow of pumped concrete.

Spreading Kinetics of Poly(diisobutylene maleic acid) at the Air-water Interface

  • Kim, Nam Jeong
    • 한국응용과학기술학회지
    • /
    • 제32권4호
    • /
    • pp.661-668
    • /
    • 2015
  • The surface rheological properties of polymer monolayer show complicated non-linear viscoelastic flow phenomena when they are subjected to spreading flow. These spreading flow properties are controlled by the characteristics of flow units. The kinetics of the formation of an interfacial film obtained after spreading poly(diisobutylene maleic acid) at air-water interface were studied by measuring of the surface pressure with time. The experimental data were analyzed theoretically according to a nonlinear surface viscoelastic model. The values of dynamic modulus, static modulus, surface viscosities and rheological parameters in various area/ monomer were obtained by appling experimental data to the equation of nonlinear surface viscoelastic model.