• Title/Summary/Keyword: rheological parameters

Search Result 199, Processing Time 0.027 seconds

Production Of Gellan Gum by Pseudomonas elodea (I) -Estimation of Metabolic Parameters and Rheological Properties of Culture Broth- (Pseudomonas elodea에 의한 Gellan Gum 생산(I) -metabolic parsmeter의 추정및 배양액의 유변학적 특성-)

  • 정봉우;박선호
    • KSBB Journal
    • /
    • v.5 no.3
    • /
    • pp.235-240
    • /
    • 1990
  • A quantitative physiological approach has been employed to estimate the metabolic parameters such as specific uptake rates of nutrients and specific production rate in continuous culture of Pseudomonas elodea for gellan gum production. The estimated values of metabolic parameters are used for process improvement. During the exponential growth phase, the specific growth rate was 0.16hr-1 in batch culture. The gellan gum concentration increased up to 0.7g dry weight/100g broth and the apparent viscosity of the culture broth was about 4,500 cp.(72hrs culture). The ratio of specific uptake rate of carbon to that of nitrogen were found to be optimum at about 3.0mg-carbon/mg-nitro-gen. With the improved medium, the maximum gellan production rate, 0.6g dry weight/1/hr, was obtained at D=0.14 hr-1. The shear stresses of culture broth were fairly well correlated with shear rates by using Casson equation and at highly viscous culture broth, oxygen transfer coefficient was greatly reduced.

  • PDF

Rheological Changes of Chewing Gum During Storage (츄잉검의 저장중 물성변화)

  • Lee, Yoon-Hyung;Yoo, Myung-Shik;Jhin, Hong-Seung;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.460-468
    • /
    • 1985
  • Changes in intrumental and sensory Theological parameters of chewing gum during storage were stuided. Texture changes are influenced to the great extent by moisture content of stored chewing gum and D.E. of cornsyrup, meanwhile content of cornsyrup, process condition and storage temperature had a little effect on texture change. Highly significant correlation was observed between logarithmic instrumental texture parameters of deformation, bending and puncture test and logarithmic moisture content. And also good correlations were observed between each sensory and instrumental texture parameters. The optimum texture values were estimated by regression analysis.

  • PDF

The crack propagation of fiber-reinforced self-compacting concrete containing micro-silica and nano-silica

  • Moosa Mazloom;Amirhosein Abna;Hossein Karimpour;Mohammad Akbari-Jamkarani
    • Advances in nano research
    • /
    • v.15 no.6
    • /
    • pp.495-511
    • /
    • 2023
  • In this research, the impact of micro-silica, nano-silica, and polypropylene fibers on the fracture energy of self-compacting concrete was thoroughly examined. Enhancing the fracture energy is very important to increase the crack propagation resistance. The study focused on evaluating the self-compacting properties of the concrete through various tests, including J-ring, V-funnel, slump flow, and T50 tests. Additionally, the mechanical properties of the concrete, such as compressive and tensile strengths, modulus of elasticity, and fracture parameters were investigated on hardened specimens after 28 days. The results demonstrated that the incorporation of micro-silica and nano-silica not only decreased the rheological aspects of self-compacting concrete but also significantly enhanced its mechanical properties, particularly the compressive strength. On the other hand, the inclusion of polypropylene fibers had a positive impact on fracture parameters, tensile strength, and flexural strength of the specimens. Utilizing the response surface method, the relationship between micro-silica, nano-silica, and fibers was established. The optimal combination for achieving the highest compressive strength was found to be 5% micro-silica, 0.75% nano-silica, and 0.1% fibers. Furthermore, for obtaining the best mixture with superior tensile strength, flexural strength, modulus of elasticity, and fracture energy, the ideal proportion was determined as 5% micro-silica, 0.75% nano-silica, and 0.15% fibers. Compared to the control mixture, the aforementioned parameters showed significant improvements of 26.3%, 30.3%, 34.3%, and 34.3%, respectively. In order to accurately model the tensile cracking of concrete, the authors used softening curves derived from an inverse algorithm proposed by them. This method allowed for a precise and detailed analysis of the concrete under tensile stress. This study explores the effects of micro-silica, nano-silica, and polypropylene fibers on self-compacting concrete and shows their influences on the fracture energy and various mechanical properties of the concrete. The results offer valuable insights for optimizing the concrete mix to achieve desired strength and performance characteristics.

Product Characteristics as Factors of Process Parameters in Starch Phosphates Preparation by Twin-screw Extruder (이축압출성형기로 인산전분 제조시 Process Parameters에 따른 제품의 특성)

  • Kim, Chong-Tai;Kim, Dong-Chul;Kim, Chul-Jin;Kim, Hae-Sung
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.235-240
    • /
    • 1991
  • Starch phosphates were prepared from the corn starch mixed with 2% sodium tripolyphosphate by twin-screw extruder with a feed rate of 20 kg/hr and an extrusion temperature of $130^{\circ}C$, and the effects of extrusion variables on the physicochemical properties (target parameters) of starch phosphates were investigated. Interrelations of system parameters (specific mechanical energy and extrudate moisture) and rheological properities of starch was analyzed by using the response surface analysis. Degree of substitution (DS) was increased with increasing the feed moisture, and showed the maximum value at the screw of near 250 rpm, Degree of gelatinization was proportionally increased with increasing the screw speed and decreasing the feed moisture. Apparent viscosity of the paste was increased with increasing the feed moisture, but it was not significantly affected by the screw speed. It was found by scanning electron microscopy that the starch microgranules were much more degradaded, and as consequent result, the intrinsic viscosity was decreased, whereas, water solubility index was increased. The rate of retrogradation of the gels was retarded with increasing DS and decreasing viscosity.

  • PDF

EFFEECTS OF NON-NEWTONIAN FLUID MODEL ON HEMODYNAMICS IN CEREBRAL SACCULAR ANEURYSMS (낭상 뇌동맥류 혈류유동에서 비뉴우토니안 유체 모델의 영향)

  • Park, J.S.;Lee, S.W.
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.81-87
    • /
    • 2011
  • The importance of shear thinning non-Newtonian blood rheology on the hemodynamic characteristics of idealized cerebral saccular aneurysms were investigated by carrying out CFD simulations assuming two different non-Newtonian rheology models (Carreau and Ballyk models). To explore effects of vessel curvature, a straight and a curved vessel geometry were considered. The wall shear stress(WSS), relative residence time(RRT) and velocity distribution were compared at the different phases of cardiac cycle. As expected, blood entered the aneurysm at the distal neck and created large vortex in both aneurysms, but with higher momentum on the curved vessel. Hemodynamic characteristics such as WSS, and RRT exhibited only minor effects by choice of different rheological models although Ballyk model produced relatively higher effects. We conclude that the assumption of Newtonian fluid is reasonable for studies aimed at quantifying the hemodynamic characteristics, in particular, WSS-based parameters, considering the current accuracy level of medical image of cerebral aneurysm.

Pressure analysis in grouting and water pressure test to achieving optimal pressure

  • Amnieh, Hassan Bakhshandeh;Masoudi, Majid;Kolahchi, Reza
    • Geomechanics and Engineering
    • /
    • v.13 no.4
    • /
    • pp.685-699
    • /
    • 2017
  • In order to determine the rate of penetrability, water pressure test is used before the grouting. One of the parameters which have the highest effect is pressure. Mathematical modeling is used for the first time in this study to determine the optimum pressure. Thus, the joints that exist in the rock mass are simulated using cylindrical shell model. The joint surroundings are also modeled through Pasternak environment. In order to validate the modeling, pressure values obtained by the model were used in the sites of Seymareh and Aghbolagh dams and the relative error rates were measured considering the differences between calculated and actual pressures recorded in these operations. In water pressure test, in Seymareh dam, the error values were equal to 4.75, 3.93, 4.8 percent and in the Aghbolagh dam, were 22.43, 5.22, 2.6 percent and in grouting operation in Seymareh dam were equal to 9.09, 32.50, 21.98, 5.57, 29.61 percent and in the Aghbolagh dam were 2.96, 5.40, 4.32 percent. Due to differences in rheological properties of water and grout and based on the overall results, modeling in water pressure test is more accurate than grouting and this error in water pressure test is 7.28 percent and in grouting is 13.92 percent.

Semi-active control of seismic response of a building using MR fluid-based tuned mass damper

  • Esteki, Kambiz;Bagchi, Ashutosh;Sedaghati, Ramin
    • Smart Structures and Systems
    • /
    • v.16 no.5
    • /
    • pp.807-833
    • /
    • 2015
  • While tuned mass dampers are found to be effective in suppressing vibration in a tall building, integrating it with a semi-active control system enables it to perform more efficiently. In this paper a forty-story tall steel-frame building designed according to the Canadian standard, has been studied with and without semi-active and passive tuned mass dampers. The building is assumed to be located in the Vancouver, Canada. A magneto-rheological fluid based semi-active tuned mass damper has been optimally designed to suppress the vibration of the structure against seismic excitation, and an appropriate control procedure has been implemented to optimize the building's semi-active tuned mass system to reduce the seismic response. Furthermore, the control system parameters have been adjusted to yield the maximum reduction in the structural displacements at different floor levels. The response of the structure has been studied with a variety of ground motions with low, medium and high frequency contents to investigate the performance of the semi-active tuned mass damper in comparison to that of a passive tuned mass damper. It has been shown that the semi-active control system modifies structural response more effectively than the classic passive tuned mass damper in both mitigation of maximum displacement and reduction of the settling time of the building.

The Role of Ca Equilibrium on the Functional Properties of Cheese: A Review

  • Lee, Mee-Ryung;Lee, Won-Jae
    • Food Science of Animal Resources
    • /
    • v.29 no.5
    • /
    • pp.545-549
    • /
    • 2009
  • The functional properties of cheese, such as texture and melt, are known to be controlled by several important parameters. Recently, the characteristics of Ca in cheeses, especially the form of Ca (insoluble (INSOL) or soluble) and the shift in Ca equilibrium (i.e., from INSOL to soluble Ca), during aging has received a lot of attention. The INSOL form of Ca, which is present as a structural form in casein, plays a critical role in determining the functional properties of cheese during the early period of ripening (~1 mon). It seems that there is always a reduction of INSOL Ca content in cheese during ripening and there are also factors that can affect the shift in Ca equilibrium. These factors may include the composition of cheese milk, cheese manufacturing pH, acid development during aging, adopting curd-washing in various methods, pre-acidification of milk, etc. There have been many studies showing that the rheological and melting properties of cheese during ripening were significantly (p<0.05) affected by the shift in Ca equilibrium. Therefore, for cheese makers, it is now possible to predict/manage the functional properties of cheese by monitoring and controlling Ca equilibrium in cheese during aging.

Hydration and time-dependent rheology changes of cement paste containing ground fly ash

  • Chen, Wei;Huang, Hao
    • Computers and Concrete
    • /
    • v.11 no.1
    • /
    • pp.39-49
    • /
    • 2013
  • The use of ground fly ash in concrete can increase the risk of slump loss due to the drastic surface change of the particles after the grinding treatment and the accelerated reaction compared to the untreated ash. This study is aimed at the early age hydration and time-dependent rheology changes of cement paste containing ground fly ash. An original fly ash is ground into different fineness and the hydration of cement paste containing the ground fly ash is monitored with the ultrasound propagation method. The zeta potentials of the solid particles are measured and the changes of rheological parameters of the cement pastes with time are analyzed with a rheometer. A particle packing model is used to probe packing of the solid particles. The results show that the early age hydration of the paste is strongly promoted by replacing Portland cement with fly ash up to 30 percent (by mass), causing increase of the yield stress of the paste. The viscosity of a paste containing ground fly ash is lower than that containing the untreated ash, which is explained by the denser packing of the solid particles.

Estimation of Performance Variation of ER Clutch due to Temperature Increase of ER Fluid (ER 유체의 온도상승에 의한 ER 클러치의 성능변화 예측)

  • 이규한;심현해;김창호;임윤철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.151-166
    • /
    • 1997
  • ER clutch is a device using ER fluid, so called "intelligent material" and is a controlled system with electric field strength. Current problem of this device is that the temperature of ER fluid increases when ER clutch is operating and affects the performance of ER clutch. This study was undertaken to estimate this performance variation due to temperature increase of ER fluid. Analytic power transmission relationships and the temperature increase model using the rheological model of ER fluid were developed and the dynamic model of proposed ER clutch system was constructed, also. With this relationships, effects of changing geometric, kinetic parameters of ER clutch and ER fluid properties were described and performance variations due to temperature increases of ER fluid were estimated. In conclusion, compared with neglecting temperature increase effects, a performance of ER clutch was very differential. Therefore, to achieve uniform performance of ER clutch, we have to improve thermal stability of ER fluid with a view point of material development and design carefully ER clutch considering temperature increase effects with a view point of mechanical design skill.ign skill.

  • PDF