• Title/Summary/Keyword: rhenium-188

Search Result 17, Processing Time 0.033 seconds

Labelling with Rhenium-188 (Rhenium-188 방사성 의약품)

  • Choe, Yearn-Seong
    • 대한핵의학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.193-195
    • /
    • 1999
  • There is considerable interest in $^{188}Re$ due to its favorable properties as a therapeutic radionuclide $^{188}Re$ and $^{99m}Tc$ act as a matched pair because of their similar chemical properties, and therefore methods of labeling with $^{99m}Tc$ can be applied to the labeling with $^{188}Re$. With appropriately chosen agents as carriers of $^{188}Re$, the labeling can be readily carried out using $^{188}ReO_4^-$ in the presence of a reducing agent. $^{188}Re$ radio-pharmaceuticals based on $^{99m}Tc$ complexes have been synthesized and are currently being studied for clinical use. Some of them are shown to be suitable for therapeutic use and promising for radiotherapy in nuclear medicine.

  • PDF

Intratumoral Administration of Rhenium-188-Labeled Pullulan Acetate Nanoparticles (PAN) in Mice Bearing CT-26 Cancer Cells for Suppression of Tumor Growth

  • Song, Ho-Chun;Na, Kun;Park, Keun-Hong;Shin, Chan-Ho;Bom, Hee-Seung;Kang, Dong-Min;Kim, Sung-Won;Lee, Eun-Seong;Lee, Don-Haeng
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1491-1498
    • /
    • 2006
  • The feasibility of pullulan acetate nanoparticles (PAN) with ionic strength (IS) sensitivity as a radioisotope carrier to inhibit tumor growth is demonstrated. PAN was radiolabeled with rhenium 188 (Re-188) without any chelating agents. The labeling efficiency of Re-188 into PAN (Re-188PAN) was $49.3{\pm}4.0%$ as determined by TLC. The tumor volumes of mice treated with 0.45 mCi of Re-188-PAN were measured and compared with that of free Re-188 after 5 days of intratumoral injection. For the histological evaluation of apoptotic nuclei of tumor cells, hematoxylin and eosin (H&E), and terminal deoxynucleotidyl transferase biotinylated deoxyuridine triphosphate nick end labeling (TUNEL) staining were performed. The mean tumor volume of the Re-188-PAN-treated group was decreased by 36% after 5 days, whereas that the free Re-188-treated group was decreased by only 15% (P<0.05). The mean number of TUNEL-positive cells in Re-188-PAN-treated tumors at $144.3{\pm}79.9$ cells/section was significantly greater than the control ($26.7{\pm}7.9$ cells/section, P=0.03). The numbers of leukocyte and lymphocyte were decreased in both free Re-188- and Re-188-PAN-treated mice. These results indicated that the intratumoral injection of Re-188-PAN effectively inhibits the tumor growth by prolonging Re-188 retention time in tumor site induced by the IS sensitivity.

188Re Labeled liver therapeutic drugs for hepatic carcinoma (HCC)

  • Seelam, Sudhakara Reddy;Banka, Vinay Kumar;Lee, Yun-Sang;Jeong, Jae Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.5 no.1
    • /
    • pp.26-35
    • /
    • 2019
  • $^{188}Re$ is one of the most readily available generator derived and useful radionuclides for therapy emitting ${\beta}^-$ particles (2.12 MeV, 71.1% and 1.965 MeV, 25.6%) and imageable gammas (155 keV, 15.1%). The $^{188}W/^{188}Re$ generator is an ideal source for the long term (4-6 months) continuous availability of no carrier added (NCA) $^{188}Re$ suitable for the preparation of radiopharmaceuticals for radionuclide therapy. Rhenium-188 has been used for the preparation of therapeutic radiopharmaceuticals for the management of diseases such as bone metastasis, rheumatoid arthritis and primary cancers. Several early phase clinical studies using radiopharmaceuticals based on $^{188}Re$ -labeled phosphonates, antibodies, peptides, lipiodol and particulates have been reported. In this review, we addressed the current development status of $^{188}Re$ radiopharmaceuticals for liver cancer therapy and their applications.

Production of Re-188 (Rhenium-188 생산)

  • Yang, Seung-Dae;Suh, Yong-Sup;Kim, Sang-Uk;Lim, Sang-Moo
    • 대한핵의학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.189-192
    • /
    • 1999
  • $^{188}Re$ (${\beta}^-=2.2$ MeV; ${\gamma}^-$=155 keV; $T_{1/2}$=16.9 hours) is an attractive therapeutic radioisotope which is produced from decay of reactor-produced tungsten-188 parent ($T_{1/2}$=69 days). $^{188}W$ has been produced from the double neutron capture reaction of $^{186}W.\;^{188}Re$ can be easily obtained by elution of saline on alumina based $^{188}W/^{188}Re$ generator, which is commercially available. Complexes labelled with $^{188}Re$ have been developed for the radiotherapy treatment of diseases because of the desirable nuclear properties of the radioisotope and it's chemical properties similar to those of technetium, a well established diagnostic agent.

  • PDF

DA-7911, $^{188}Rhenium-tin$ Colloid, as a New Therapeutic Agent of Rheumatoid Arthritis

  • Shin, Chang-Yell;Son, Miwon;Ko, Jun-Il;Jung, Mi-Young;Lee, In-Ki;Kim, Soon-Hoe;Kim, Won-Bae;Jeong, Jae-Min;Song, Yeong-Wook
    • Archives of Pharmacal Research
    • /
    • v.26 no.2
    • /
    • pp.168-172
    • /
    • 2003
  • Radiation synovectomy is one of the most useful methods for treating patients with refractory synovitis because of its convenience, long-term effects, repeatability and the avoidance of surgery. In this study, we investigated the toxicity, stability and biodistribution of a rhenium-188 ($^{188}$Re)-tin colloid to evaluate its suitability as a synovectomy agent. Twenty four hours after injecting the $^{188}$Re-tin colloids (74 KBq/0.1 mL) into the tail vein of ICR mice, most of the $^{188}$Retin colloidal particles was found in the lungs. In addition, there were no particle size changes at either room temperature or at $37^{\circ}C$ after injecting the $^{188}$Re-tin colloids in human plasma and synovial fluid. In vitro stability tests showed that the $^{188}$Re-tin colloid remained in a colloidal form without a critical size variation over a 2-day period. We investigated the leakage of $^{188}$Retin colloids from the intraarticular injection site with gamma counting in New Zealand white rabbits. The $^{188}$Re-tin colloids (55.5 MBq/0.15 mL) were injected at the cavum articular and the mean retention percentage of the $^{188}$Re-tin colloid was 98.7% for 1 day at the injection site, which suggests that there was neither change in the particle size nor leakage at the injection sites. In the biodistribution study with the SD rats, the liver showed the highest radioactivity (0.0427% ID/organ) except for the injected knees (99.49%). In the SD rats, mild toxicities including the skin or a synovium inflammation were observed as a result of a radioactivity of 15 mCi/kg at the intraarticular injection site. However, there was no systemic toxicity. In the Ovalbumin (OVA)-induced arthritic rabbits, the $^{188}$Re-tin colloid improved the macroscopic, the histological score and reduced the knee joint diameter when compared to the arthritic control. In conclusion, a $^{188}$Re-tin-colloid is considered as a strong candidate for radiation synovectomy with a superior efficacy and safety.

DA-7911, rhenium-188 ($Re^{188}$) tin colloid. as a strong candidate agent for radiation synovectomy

  • Shin, Chang-Yell;Jung, Mi-Young;Lee, In-Ki;Son, Mi-Won;Kim, Soon-Hoe;Kim, Won-Bae
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.252-252
    • /
    • 2002
  • Radiation synovectomy is an useful alternative treatment to rheumatoid arthritis and Re$\^$188/ is suggested as an ideal radiopharmaceutical agents because beta ray (2.1 MeV) emitted from Re$\^$188/ is appropriate for synovial cell ablation and gamma ray (155 KeV) is ideal for dosimetry. Its' ideal particle size (2-5 mm) was achieved by conjugation with tin-colloid, In this study, we investigated the toxicity, stability and biodistribution to evaluate the suitability of DA-7911 as a synovectomy agent. (omitted)

  • PDF

The development of a portable MO4- (M = 188Re or 99mTc) concentration device for extending the lifetime of RI generators

  • Choi, Kang-Hyuk;Park, Ul Jae;Kim, Jong Bum;Jang, Beom-Su
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.5 no.1
    • /
    • pp.3-10
    • /
    • 2019
  • The activities per volume of $^{188}Re$ and $^{99m}Tc$ from their generators are dependent on the specific activity of their mother nuclides $^{188}W$ and $^{99}Mo$ respectively. After a particular lapse of time, the eluted RI activity is exponentially reduced and thus cannot satisfy the needs of clinical application. The purpose of this study is to develop a $^{188}Re$ and $^{99m}Tc$ concentration device with a compact size that can extend the period of use as well as conveniently concentrate the RI. We designed the concentration module by including two-different check valves that do not required any manual on-off operations. In these concentration process, cation exchange resin embedded with Ag and anion exchange resins were used. After completing the concentrating step, the recovering yield was identified to be more than 93% for $^{188}Re$ generators and 88% for $^{99m}Tc$ generators. Moreover, all these procedures were done within 5 min.