• Title/Summary/Keyword: rf sputter

Search Result 397, Processing Time 0.028 seconds

Orientation Characteristics of AIN Thin Film using RF Magnetron Sputtering wish Incident Angle (입사각을 가진 RF 마그네트론 스퍼터링법으로 증착한 AIN 박막의 배향 특성)

  • 박영순;김덕규;송민종;박춘배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.395-398
    • /
    • 2000
  • Reactive radio frequency (RF)magnetron sputter with incident angle has been used to deposit AlN thin film on a crystalline Si substrate. (002)Preferred orientation of AlN thin film has been obtained at low sputtering pressure. Also it has been shown that depostion rate of AIN thin film is affected by fraction Ar and $N_2$ partial pressure. But substrate temperature didn't affect depostion rate of AIN thin film . As sputtering pressure increased preferred orientation degraded. The internal stress changed from tensile stress to compressive stress as fraction of $N_2$ partial pressure increased. At low nitrogen partial pressure cermet$^{[1]}$ AIN thin film is obtained.

  • PDF

Tribological properties of MoS$_2$ film deposited by RF magnetron sputtering (RF 마그네트론 스퍼터링법으로 제조된 MoS$_2$ 박막의 윤활 특성에 관한 연구)

  • 안영환;김선규
    • Journal of the Korean institute of surface engineering
    • /
    • v.33 no.4
    • /
    • pp.266-272
    • /
    • 2000
  • Sputtered $MoS_2$ thin films provide lubrication and wear improvements for vacuum and space applications. In this study, deposition of $MoS_2$ thin films by R.F. magnetron sputtering was studied with regard to the micro-structural change of $MoS_2$ film and mechanical properties. The coating parameters such as the working pressure, the RF power, the substrate temperature, the etching time were varied to determine how these parameters affected the film morphology and mechanical properties of deposited films. The best wear properties and critical load were observed with the film deposited at $70^{\circ}C$, 1.0$\times$$10^{ -3}$ Torr, 170W and 1 hour deposition time. The critical load increased with the increase of sputter etching time.

  • PDF

Properties of the RF Sputter Deposited n-ZnO Thin-Film and the n-ZnO/p-GaN heterojunction LED (RF스퍼터링법으로 성장시킨 n-ZnO 박막과 n-ZnO/p-GaN 이종접합 LED의 특성)

  • Shin, Dongwhee;Byun, Changsub;Kim, Seontai
    • Korean Journal of Materials Research
    • /
    • v.23 no.3
    • /
    • pp.161-167
    • /
    • 2013
  • The ZnO thin films were grown on GaN template substrates by RF magnetron sputtering at different RF powers and n-ZnO/p-GaN heterojunction LEDs were fabricated to investigate the effect of the RF power on the characteristics of the n-ZnO/p-GaN LEDs. For the growth of the ZnO thin films, the substrate temperature was kept constant at $200^{\circ}C$ and the RF power was varied within the range of 200 to 500W at different growth times to deposit films of 100 nm thick. The electrical, optical and structural properties of ZnO thin films were investigated by ellipsometry, X-ray diffraction (XRD), atomic force microscopy (AFM), photoluminescence (PL) and by assessing the Hall effect. The characteristics of the n-ZnO/p-GaN LEDs were evaluated by current-voltage (I-V) and electroluminescence (EL) measurements. ZnO thin films were grown with a preferred c-axis orientation along the (0002) plane. The XRD peaks shifted to low angles and the surface roughness became non-uniform with an increase in the RF power. Also, the PL emission peak was red-shifted. The carrier density and the mobility decreased with the RF power. For the n-ZnO/p-GaN LED, the forward current at 20 V decreased and the threshold voltage increased with the RF power. The EL emission peak was observed at approximately 435 nm and the luminescence intensity decreased. Consequently, the crystallinity of the ZnO thin films grown with RF sputtering powers were improved. However, excess Zn affected the structural, electrical and optical properties of the ZnO thin films when the optimal RF power was exceeded. This excess RF power will degrade the characteristics of light emitting devices.

Fabrication of TiO2 thin films for perovskite solar cell using RF magnetron sputter

  • Cho, Kyungjin;Lee, Seunghun;Kim, Seongtak;Chung, Teawon;Lee, Sang-won;Kim, Soo Min;Park, Hyomin;Kang, Yoonmook;Lee, Hae-seok;Kim, Donghwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.305.1-305.1
    • /
    • 2016
  • 페로브스카이트 태양전지는 차세대 태양전지로써 몇 년 사이에 매우 큰 폭으로 효율이 증가하고 있으며 활발한 연구가 진행되고 있다. 페로브스카이트의 태양전지의 구조는 전자전도체, 페로브스카이트 광흡수체, 정공전도체, 전극으로 구성된다. 전자전도체는 전자 포집성이 우수한 다공성 TiO2 층과 TiO2 박막 층으로 구성된다. 균일한 박막 TiO2를 형성하는 것은 페로브스카이트 태양전지의 개방전압 특성에 기여한다. TiO2 박막을 제조하는 방법으로써 용액을 사용한 스핀 코팅 법은 간편하게 제조가 가능하나, 일정한 두께의 박막을 형성하지 못하고 균일하지 못하는 단점을 가진다. 본 연구에서는 RF 마그네트론 스퍼터를 이용하여 보다 균일한 TiO2 박막을 제조하였다. X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Light IV, Quantum Efficiency (QE)로 분석하였다. 이를 통하여 제조방법 차이에 따른 페로브스카이트 태양전지의 영향을 분석하였다.

  • PDF

Influence of Magnetic Field Near the Substrate on Characteristics of ITO Film Deposited by RF Sputtering Method (기판 부근의 자기장이 RF 스퍼터링법으로 증착된 ITO 박막의 특성에 미치는 영향)

  • Kim, Hyun-Soo;Jang, Ho-Won;Kang, Jong-Yoon;Kim, Jin-Sang;Yoon, Suk-Jin;Kim, Chang-Kyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.563-568
    • /
    • 2012
  • Indium tin oxide (ITO) films were prepared using radio frequency (RF) magnetron sputtering method, magnets were equipped near the target in the sputter to bring the plasma near the target. The effect of magnetic field that brings the plasma near the substrate was compared with that of substrate heating. The effect of substrate heating on the grain size of the ITO thin film was larger than that of the magnetic field. However, the grain size of the ITO thin film was larger when the magnetic field was applied near the substrate during the sputtering process than when the substrate was not heated and the magnetic field was not applied. If stronger magnetic field is applied near the substrate during sputtering, it can be expected that the ITO thin film with good electrical conductivity and high transparency is obtained at low substrate temperature. When magnetic field of 90 Gauss was applied near the substrate during sputtering, the mobility of the ITO thin film increased from 15.2 $cm^2/V.s$ to 23.3 $cm^2/V.s$, whereas the sheet resistivity decreased from 7.68 ${\Omega}{\cdot}cm$ to 5.11 ${\Omega}{\cdot}cm$.

Fundamental characteristics of non-mass separated ion beam deposition with RE sputter-type ion source (고주파 스퍼터타입 이온소스를 이용한 비질량분리형 이온빔증착법에 관한 특성연구)

  • ;Minoru Isshiki
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.2
    • /
    • pp.136-143
    • /
    • 2003
  • In this paper, high purity RF sputter-type ion source for non-mass separated ion beam deposition was evaluated. The fundamental characteristics of the ion source which is composed of an RF Cu coil and a high purity Cu target (99.9999 %) was studied, and the practical application of Cu thin films for ULSI metallization was discussed. The relationship between the DC target current and the DC target voltage at various RF power and Ar gas pressures was measured, and then preparation conditions for Cu thin films was described. As a result, it was found that the deposition conditions of the target voltage, the target current and the Ar pressure were optimized at -300 V, 240 W and 9 Pa, respectively. The resistivity of Cu films deposited at a bias voltage of -50 V showed a minimum value of 1.8 $\pm$ 0.1 $mu\Omega$cm, which is close to that of Cu bulk (1.67 $mu\Omega$cm).

The Plasma Modification of Polycarbonate and Polyethersulphone Substrates for Ta2O5 Thin Film Deposition (Ta2O5 박막증착에서 플라즈마 전 처리를 통한 Polycarbonate와 Polyethersulphone 기판의 표면 개질)

  • Kang, Sam-Mook;Yoon, Seok-Gyu;Jung, Won-Suk;Yoon, Dae-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.1 s.284
    • /
    • pp.38-41
    • /
    • 2006
  • Surface of PC (Polycarbonate) and PES (Polyethersulphone) treated by plasma modification with rf power from 50 W to 200 W substrates in Ar (3 sccm), $O_2$ (12 sccm) atmosphere. From the results of modified substrates in XPS (X-ray Photoelectron Spectroscopy), the ratio of oxide containing bond increased with rf power. As the rf power was 200 W, the contact angle was the lowest value of 14.09 degree. And the datum from AFM (Atomic Force Microscopy), rms roughness value of PES and PC substrates increased with rf power. We could deposit $Ta_2O_5$ with good adhesion on plasma treated PES and PC substrates using by in-situ rf magnetron sputter.

Fabrications and properties of ZnS thin film used as a buffer layer of electroluminescent device (전계발광소자 완충층용 ZnS 박막 제작 및 특성)

  • 김홍룡;조재철;유용택
    • Electrical & Electronic Materials
    • /
    • v.7 no.2
    • /
    • pp.117-122
    • /
    • 1994
  • The role of ZnS buffer layer not only suppresses chemical reactions between emission material and insulating material but also alters the luminescence and the crystallinity of the emission layer, if ZnS buffer layer was sandwiched between emission layer and insulating layer of electroluminescent device. In this research, we fabricated ZnS thin film with rf magnetron sputter system by varying rf power 100, 200W, substrate temperature 100, 150, 200, 250.deg. C and post-annealing temperature 200, 300, 400, 500.deg. C and analysed X-ray diffraction pattern, transmission spectra and cross section by SEM photograph for seeking the optimal crystallization condition of ZnS buffer layer. As a result, increasing the rf power, the crystallinity of ZnS thin film was improved. It was found that the ZnS thin film had better properties than anything else when fabricated with the following conditions ; rf power 200W, substrate temperature 150.deg. C, and post-annealing temperature 400.deg. C. ZnS thin film had the transmittance more than 80% in visible range. So it is suitable to use as a buffer layer of electroluminescent devices.

  • PDF

RF Magentron Sputtering deposited by ZnO:Ga thin film characterization for a transparent thin film transistor an application (투명 박막 트랜지스터 응용을 위한 RF Magnetron Sputtering으로 증착된 ZnO:Ga 박막의 특성)

  • Lee, Seok-Jin;Kwon, Soon-Il;Park, Seung-Beum;Jung, Tae-Hwan;Lim, Dong-Gun;Park, Jea-Hwan;Yang, Kea-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.146-147
    • /
    • 2008
  • In this paper we report upon an investigation into the effect of sputter RF power on the electrical properties of Gallium doped zinc oxide (ZnO:Ga) film. Structural, electrical and optical properties of the ZnO:Ga films were investigation in terms of the sputtering power. Working pressure fixed in 5 mtorr and RF powers the variable did with 50~100 W. The result, We were able to without substrate temperature obtain resistivity of $9.3\times10^{-4}{\Omega}cm$ and optical transmittance of 90%.

  • PDF

Simulation and Characteristic Measurement with Sputtering Conditions of Triode Magnetron Sputter

  • Kim, Hyun-Hoo;Lim, Kee-Joe
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.1
    • /
    • pp.11-14
    • /
    • 2004
  • An rf triode magnetron sputtering system is designed and installed its construction in vacuum chamber. In order to calibrate the rf triode magnetron sputtering for thin films deposition processes, the effects of different glow discharge conditions were investigated in terms of the deposition rate measurements. The basic parameters for calibrating experiment in this sputtering system are rf power input, gas pressure, plasma current, and target-to-substrate distance. Because a knowledge of the deposition rate is necessary to control film thickness and to evaluate optimal conditions which are an important consideration in preparing better thin films, the deposition rates of copper as a testing material under the various sputtering conditions are investigated. Furthermore, a triode sputtering system designed in our team is simulated by the SIMION program. As a result, it is sure that the simulation of electron trajectories in the sputtering system is confined directly above the target surface by the force of E${\times}$B field. Finally, some teats with the above 4 different sputtering conditions demonstrate that the deposition rate of rf triode magnetron sputtering is relatively higher than that of the conventional sputtering system. This means that the higher deposition rate is probably caused by a high ion density in the triode and magnetron system. The erosion area of target surface bombarded by Ar ion is sputtered widely on the whole target except on both magnet sides. Therefore, the designed rf triode magnetron sputtering is a powerful deposition system.