• Title/Summary/Keyword: reversible rings

Search Result 29, Processing Time 0.022 seconds

BAER SPECIAL RINGS AND REVERSIBILITY

  • Jin, Hai-Lan
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.4
    • /
    • pp.531-542
    • /
    • 2014
  • In this paper, we apply some properties of reversible rings, Baerness of fixed rings, skew group rings and Morita Context rings to get conditions that shows fixed rings, skew group rings and Morita Context rings are reversible. Moreover, we investigate conditions in which Baer rings are reversible and reversible rings are Baer.

SOME RESULTS ON IFP NEAR-RINGS

  • Cho, Yong-Uk
    • Honam Mathematical Journal
    • /
    • v.31 no.4
    • /
    • pp.639-644
    • /
    • 2009
  • In this paper, we begin with to introduce the concepts of IFP and strong IFP in near-rings and then give some characterizations of IFP in near-rings. Next we derive reversible IFP, and then equivalences of the concepts of strong IFP and strong reversibility. Finally, we obtain some conditions to become strong IFP in right permutable near-rings and strongly reversible near-rings.

REVERSIBILITY AND SYMMETRY OVER CENTERS

  • Choi, Kwang-Jin;Kwak, Tai Keun;Lee, Yang
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.723-738
    • /
    • 2019
  • A property of reduced rings is proved in relation with centers, and our argument in this article is spread out based on this. It is also proved that the Wedderburn radical coincides with the set of all nilpotents in symmetric-over-center rings, implying that the Jacobson radical, all nilradicals, and the set of all nilpotents are equal in polynomial rings over symmetric-over-center rings. It is shown that reduced rings are reversible-over-center, and that given reversible-over-center rings, various sorts of reversible-over-center rings can be constructed. The structure of radicals in reversible-over-center and symmetric-over-center rings is also investigated.

SYMMETRICITY AND REVERSIBILITY FROM THE PERSPECTIVE OF NILPOTENTS

  • Harmanci, Abdullah;Kose, Handan;Ungor, Burcu
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.209-227
    • /
    • 2021
  • In this paper, we deal with the question that what kind of properties does a ring gain when it satisfies symmetricity or reversibility by the way of nilpotent elements? By the motivation of this question, we approach to symmetric and reversible property of rings via nilpotents. For symmetricity, we call a ring R middle right-(resp. left-)nil symmetric (mr-nil (resp. ml-nil) symmetric, for short) if abc = 0 implies acb = 0 (resp. bac = 0) for a, c ∈ R and b ∈ nil(R) where nil(R) is the set of all nilpotent elements of R. It is proved that mr-nil symmetric rings are abelian and so directly finite. We show that the class of mr-nil symmetric rings strictly lies between the classes of symmetric rings and weak right nil-symmetric rings. For reversibility, we introduce left (resp. right) N-reversible ideal I of a ring R if for any a ∈ nil(R), b ∈ R, being ab ∈ I implies ba ∈ I (resp. b ∈ nil(R), a ∈ R, being ab ∈ I implies ba ∈ I). A ring R is called left (resp. right) N-reversible if the zero ideal is left (resp. right) N-reversible. Left N-reversibility is a generalization of mr-nil symmetricity. We exactly determine the place of the class of left N-reversible rings which is placed between the classes of reversible rings and CNZ rings. We also obtain that every left N-reversible ring is nil-Armendariz. It is observed that the polynomial ring over a left N-reversible Armendariz ring is also left N-reversible.

REVERSIBLE AND PSEUDO-REVERSIBLE RINGS

  • Huang, Juan;Jin, Hai-lan;Lee, Yang;Piao, Zhelin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1257-1272
    • /
    • 2019
  • This article concerns the structure of idempotents in reversible and pseudo-reversible rings in relation with various sorts of ring extensions. It is known that a ring R is reversible if and only if $ab{\in}I(R)$ for $a,b{\in}R$ implies ab = ba; and a ring R shall be said to be pseudoreversible if $0{\neq}ab{\in}I(R)$ for $a,b{\in}R$ implies ab = ba, where I(R) is the set of all idempotents in R. Pseudo-reversible is seated between reversible and quasi-reversible. It is proved that the reversibility, pseudoreversibility, and quasi-reversibility are equivalent in Dorroh extensions and direct products. Dorroh extensions are also used to construct several sorts of rings which are necessary in the process.

ON COMMUTATIVITY OF NILPOTENT ELEMENTS AT ZERO

  • Abdul-Jabbar, Abdullah M.;Ahmed, Chenar Abdul Kareem;Kwak, Tai Keun;Lee, Yang
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.811-826
    • /
    • 2017
  • The reversible property of rings was initially introduced by Habeb and plays a role in noncommutative ring theory. In this note we study the reversible ring property on nilpotent elements, introducing the concept of commutativity of nilpotent elements at zero (simply, a CNZ ring) as a generalization of reversible rings. We first find the CNZ property of 2 by 2 full matrix rings over fields, which provides a basis for studying the structure of CNZ rings. We next observe various kinds of CNZ rings including ordinary ring extensions.

ON A RING PROPERTY UNIFYING REVERSIBLE AND RIGHT DUO RINGS

  • Kim, Nam Kyun;Lee, Yang
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1083-1103
    • /
    • 2013
  • The concepts of reversible, right duo, and Armendariz rings are known to play important roles in ring theory and they are independent of one another. In this note we focus on a concept that can unify them, calling it a right Armendarizlike ring in the process. We first find a simple way to construct a right Armendarizlike ring but not Armendariz (reversible, or right duo). We show the difference between right Armendarizlike rings and strongly right McCoy rings by examining the structure of right annihilators. For a regular ring R, it is proved that R is right Armendarizlike if and only if R is strongly right McCoy if and only if R is Abelian (entailing that right Armendarizlike, Armendariz, reversible, right duo, and IFP properties are equivalent for regular rings). It is shown that a ring R is right Armendarizlike, if and only if so is the polynomial ring over R, if and only if so is the classical right quotient ring (if any). In the process necessary (counter)examples are found or constructed.

ON REVERSIBILITY RELATED TO IDEMPOTENTS

  • Jung, Da Woon;Lee, Chang Ik;Lee, Yang;Park, Sangwon;Ryu, Sung Ju;Sung, Hyo Jin;Yun, Sang Jo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.993-1006
    • /
    • 2019
  • This article concerns a ring property which preserves the reversibility of elements at nonzero idempotents. A ring R shall be said to be quasi-reversible if $0{\neq}ab{\in}I(R)$ for a, $b{\in}R$ implies $ba{\in}I(R)$, where I(R) is the set of all idempotents in R. We investigate the quasi-reversibility of 2 by 2 full and upper triangular matrix rings over various kinds of reversible rings, concluding that the quasi-reversibility is a proper generalization of the reversibility. It is shown that the quasi-reversibility does not pass to polynomial rings. The structure of Abelian rings is also observed in relation with reversibility and quasi-reversibility.

ON SOME GENERALIZATIONS OF THE REVERSIBILITY IN NONUNITAL RINGS

  • Hryniewicka, Malgorzata Elzbieta;Jastrzebska, Malgorzata
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.289-309
    • /
    • 2019
  • This paper is intended as a discussion of some generalizations of the notion of a reversible ring, which may be obtained by the restriction of the zero commutative property from the whole ring to some of its subsets. By the INCZ property we will mean the commutativity of idempotent elements of a ring with its nilpotent elements at zero, and by ICZ property we will mean the commutativity of idempotent elements of a ring at zero. We will prove that the INCZ property is equivalent to the abelianity even for nonunital rings. Thus the INCZ property implies the ICZ property. Under the assumption on the existence of unit, also the ICZ property implies the INCZ property. As we will see, in the case of nonunital rings, there are a few classes of rings separating the class of INCZ rings from the class of ICZ rings. We will prove that the classes of rings, that will be discussed in this note, are closed under extending to the rings of polynomials and formal power series.