• Title/Summary/Keyword: reversed cyclic loading

Search Result 130, Processing Time 0.022 seconds

Shear Behavior of Wide Beam-Column Joints with Slab (슬래브가 있는 넓은 보-기둥 접합부의 전단거동)

  • 안종문;최종인;신성우;이범식;박성식;양지수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.157-162
    • /
    • 2003
  • An experimental investigation was conducted to study the behavior of high-strength RC wide beam-column joints with slab subjected to reversed cyclic loads under constant axial load. Six half scale interior wide beam-column assemblies representing a portion of a frame subjected to simulated seismic loading were tested, including three specimens without slab and three specimens with slab. The primary variables were compressive strength of concrete($f_ck$=285, 460kgf/$cm^2$), the ratio of the column-to-beam flexural capacity($M_r$=$\Sigma M_c / \Sigma M_b$ ; 0.77 -2.26), extended length of the column concrete($l_d$ ; 0, 12.5, 30cm), ratio of the column-to-beam width(b/H ; 1.54, 1.67). Test results are shown that (1) the behavior of specimen using high-strength concrete satisfied for required minimum ductile capacity according to increase the compressive strength, (2) the current design code and practice for interior joints(type 2) are apply to the wide beam-high strength concrete column.

  • PDF

Shear strength of Cast-In Place R/C Infill Shear Wall (현장타설 철근콘크리트 끼움벽의 전단강도)

  • Choi Chang Sik;Lee Hye Yeon;Kim Sun Woo;Yun Hyun Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.247-250
    • /
    • 2005
  • The aim of Cast-In-Place(CIP) method is to upgrade the strength, ductility and stiffness of the structure to the required level. The main objective of this research is to investigate the shear and the flexural strength of reinforced concrete frames infilled with CIP reinforced concrete wall. For this three 1/3 scale, one-bay, one story reinforced concrete infill wall were tested under reversed cyclic loading simulating the seismic effect. Results of tests of CIP shear wall were reviewed to evaluate the current design provisions and to establish the feasible retrofitting method.

  • PDF

Predicting the Ductility Capacity of Reinforced Concrete Beam-Column Joints (철근콘크리트 보-기둥 접합부의 연성능력 평가)

  • Oh Ki-Jong;Chai Hyee-Dai;Lee Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.227-230
    • /
    • 2005
  • This paper provides a method to predict the ductile capacity of reinforced concrete beam-column joints that fail in shear after the plastic hinges occur at both ends of the adjacent beams. The proposed method takes into account shear strength deterioration in the beam-column joints. The shear strength and the corresponding ductility of the proposed method was verified by comparing with the four RC beam-column assembles under reversed cyclic loading corrected from the technical literature. Comparisons between the observed and calculated shear strengths and their corresponding ductilities of the tested assembles, showed reasonable agreement

  • PDF

Quasi-Static Test of Precast Concrete Large Panel Subassemblage (P.C 대형판넬 부분구조물의 Quasi-Static 실험연구)

  • Choi, Jeong-Su;Lee, Han-Seon;Kim, U;Hong, Gap-Pyo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.10a
    • /
    • pp.73-78
    • /
    • 1990
  • Large panel building systems are composed of vertical wall panels which support horizontal roof and floor panels to form a box like structure. The simplecity of the connections, which makes precast concrete economically viable, causes a lack of continuity in stiffness, strength and ductility. This precast concrete large panel systems typically have weak connection regions. Three types of 2-story full-scale precast concrete subassemblages were tested under reversed cyclic loading. The seismic resistance capacity and failure mode of each system are compared in connection with the characteristics of joint connection details.

  • PDF

Seismic behavior of strengthened reinforced concrete coupling beams by bolted steel plates, Part 1: Experimental study

  • Zhu, Y.;Su, R.K.L.;Zhou, F.L.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.2
    • /
    • pp.149-172
    • /
    • 2007
  • An experimental study of five full-scale coupling beam specimens has been conducted to investigate the seismic behavior of strengthened RC coupling beams by bolted side steel plates using a reversed cyclic loading procedure. The strengthened coupling beams are fabricated with different plate thicknesses and shear connector arrangements to study their respective effects on load-carrying capacity, strength retention, stiffness degradation, deformation capacity, and energy dissipation ability. The study revealed that putting shear connectors along the span of coupling beams produces no significant improvement to the structural performance of the strengthened beams. Translational and rotational partial interactions of the shear connectors that would weaken the load-carrying capacity of the steel plates were observed and measured. The hierarchy of failure of concrete, steel plates, and shear connectors was identified. Furthermore, detailed effects of plate buckling and various arrangements of shear connectors on the post-peak behavior of the strengthened beams are discussed.

Analytical Approach on the Concrete Columns with Welded Reinforcement Grids (격자형 용접 띠철근으로 보강된 콘크리트 기둥의 해석적 접근)

  • Choi, Chang Sik;Murat, Saatcioglu;Mongi, Grira
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.1
    • /
    • pp.137-146
    • /
    • 1999
  • Analysis of R/C columns requires modeling of the plastic hinge region, as well as nonlinear material characteristics. This becomes a challenging task in view of the nonlinearity of both steel and concrete. Furthermore, formation and progression of plasticity in the hinge is a difficult phenomenan to simulate, especially under reversed cyclic loading and decaying strength conditions. This research provide one analytical model employed in column analysis, including the analysis procedure for establishing inelastic force-deformation relationships. The analytical results show good correlation with experimental data. The employed procedure with the adopted analytical models can be used to compute inelastic displacements of concrete columns with welded reinforcement grids. The inelastic deformability beyond the peak was similar to those indicated by columns with conventional ties. The superior performance of columns with welded grids may be attributed to the improved confinement characteristics of grids associated with increased rigidity of welded ties.

  • PDF

Ratcheting boundary of pressurized pipe under reversed bending

  • Chen, Xiaohui;Chen, Xu;Li, Zifeng
    • Steel and Composite Structures
    • /
    • v.32 no.3
    • /
    • pp.313-323
    • /
    • 2019
  • Ratcheting boundary is firstly determined by experiment, elastic-plastic finite element analysis combined with C-TDF and linear matching method, which is compared with ASME/KTA and RCC-MR. Moreover, based on elastic modulus adjustment procedure, a novel method is proposed to predict the ratcheting boundary for a pressurized pipe subjected to constant internal pressure and cyclic bending loading. Comparison of ratcheting boundary of elbow pipe determined by the proposed method, elastic-plastic finite element analysis combined with C-TDF and linear matching method, which indicates that the predicted results of the proposed method are in well agreement with those of linear matching method.

Effect of masonry infilled panels on the seismic performance of a R/C frames

  • Aknouche, Hassan;Airouche, Abdelhalim;Bechtoula, Hakim
    • Earthquakes and Structures
    • /
    • v.16 no.3
    • /
    • pp.329-348
    • /
    • 2019
  • The main objective of this experimental research was to investigate the Seismic performance of reinforced concrete frames infilled with perforated clay brick masonry wall of a type commonly used in Algeria. Four one story-one bay reinforced concrete infilled frames of half scale of an existing building were tested at the National Earthquake Engineering Research Center Laboratory, CGS, Algeria. The experiments were carried out under a combined constant vertical and reversed cyclic lateral loading simulating seismic action. This experimental program was performed in order to evaluate the effect and the contribution of the infill masonry wall on the lateral stiffness, strength, ductility and failure mode of the reinforced concrete frames. Numerical models were developed and calibrated using the experimental results to match the load-drift envelope curve of the considered specimens. These models were used as a bench mark to assess the effect of normalized axial load on the seismic performance of the RC frames with and without masonry panels. The main experimental and analytical results are presented in this paper.

Behaviour of RC beam-column joint with varying location of construction joints in the column

  • Vanlalruata, Jonathan;Marthong, Comingstarful
    • Earthquakes and Structures
    • /
    • v.20 no.1
    • /
    • pp.29-38
    • /
    • 2021
  • According to ACI 224.3R-95 (ACI, 2013), construction joints (cold joint) in the column are to be provided at the top of floor slab for column continuing to the next floor and underside of floor slab and beam. A recent study reveals that providing cold joint of the mentioned location significantly reduced the seismic performance of the frame structures. Since, the construction joints in multi-story frame structures normally provided at the top of the floor slabs and at soffit of the beam in the column. This study investigated the effect of construction joint at various location in the column of beam-column joint such as at the top of floor slab, soffit level of the beam, half the depth of beam below the soffit of the beam and at a full depth of the beam below the soffit of the beam. The study revealed that there is an improvement in seismic capacity of the specimens as the location of cold joint is placed away from the soffit of the beam for lower story column.

Influence of special plaster on the out-of-plane behavior of masonry walls

  • Donduren, Mahmut Sami;Kanit, Recep;Kalkan, Ilker;Gencel, Osman
    • Earthquakes and Structures
    • /
    • v.10 no.4
    • /
    • pp.769-788
    • /
    • 2016
  • The present study aimed at investigating the effect of a special plaster on the out-of-plane behavior of masonry walls. A reference specimen, plastered with conventional plaster, and a specimen plastered with a special plastered were tested under reversed cyclic lateral loading. The specimens were identical in dimensions and material properties. The special plaster contained an additive, which increased the adherence strength of the plaster to the wall. The amount of the additive in the mortar was adjusted based on the preliminary material tests. The influence of the plaster on the wall behavior was evaluated according to the initial cracking load, type of failure, energy absorption capacity (modulus of toughness), and crack pattern of the wall. Despite having limited contribution to the ductility, the special plaster increased the ultimate load capacity of the wall about 25%. The failure mode of the wall with special plaster resembled the plastic failure mechanism of a reinforced concrete slab in the formation of yielding lines along the wall. The deflection at failure and the modulus of toughness of the wall with special plaster were measured to be in order of 60% and 75% of the corresponding values of the reference wall.