• Title/Summary/Keyword: reverse osmosis process

Search Result 203, Processing Time 0.017 seconds

Preparation of Porous Glass Membranes by the Phase-Separation Technique (상분리법에 의한 다공질 유리막의 제조)

  • 현상훈;최봉호
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.1
    • /
    • pp.59-65
    • /
    • 1988
  • To develop porous glass membranes used for a effective membrane-separation process, porous glasses and glass membranes were prepared from the sodium borosilicate parent glass by the phaseseparation technique and effects of heat-treatment and leaching conditions on their characteristics were investigated. The crack-free glass membranes could be fabricated from the 9.4 Na2-O-30.7 B2O3-59.2 SiO2-0.7 Al2O3(wt%) parent glass by heat-treatment at the lower temperature(550-570$^{\circ}C$) and for longer than 45 hrs for the phase separation, followed by leaching with 3N-HCl+60% ethylene glycol solution at 90$^{\circ}C$ over 25 hrs. Porous glasses prepared in this work showed large specific surface areas(400㎡/g) and narrow pore size distribution with the mean pore radius of 14${\AA}$ enough for the application as reverse osmosis membranes. The salt-rejection efficiency and product-flux of the glass membranes heat-treated at 570$^{\circ}C$ for 80 hrs were found to be 51.8% and 270cc/㎡. hr, respectively. This result suggests that the porous glass membranes fabricated in this study could be applied for the reverse osmosis process.

  • PDF

Synthesis and characterization of polyamide membrane for the separation of acetic acid from water using RO process

  • Mirfarah, Hesam;Mousavi, Seyyed Abbas;Mortazavi, Seyyed Sajjad;Sadeghi, Masoud;Bastani, Dariush
    • Membrane and Water Treatment
    • /
    • v.8 no.4
    • /
    • pp.323-336
    • /
    • 2017
  • The main challenge in many applications of acetic acid is acid dehydration and its recovery from wastewater streams. Therefore, the performance of polyamide thin film composite is evaluated to separate acetic acid from water. To reach this goal, the formation of polyamide layer on polysulfone support membrane was investigated via interfacial polymerization (IP) of meta-phenylenediamine (MPD) in water with trimesoyl chloride (TMC) in hexane. Also, the effect of synthesis conditions, such as concentration of monomers and curing temperature on separation of acetic acid from water were investigated by reverse osmosis process. Moreover, the separation mechanism was discussed. The solute permeation was carried out under applied pressure of 5 bar at $25^{\circ}C$. Surface properties of TFC membrane were characterized by ATR-FTIR, SEM and AFM. The performance test indicated that 3.5 wt% of MPD, 0.35 wt% of TMC and curing temperature of $75^{\circ}C$ are the optimum conditions. Moreover, the permeate flux was $4.3{\frac{L}{m^2\;h}}$ and acetic acid rejection was about 43% at these conditions.

Carbonate scale reduction in reverse osmosis membrane by CO2 in wastewater reclamation

  • Shahid, Muhammad Kashif;Pyo, Minsu;Choi, Young-Gyun
    • Membrane and Water Treatment
    • /
    • v.8 no.2
    • /
    • pp.125-136
    • /
    • 2017
  • Reverse osmosis technology is being used on large scale for treatment of ground water, brackish water, wastewater and sea water. The most challenging issue in RO process is carbonate scaling which is directly linked with the efficiency and economy. Considering the natural phenomena of carbonate scaling different adaptations have been made to control scaling on the surface of RO membrane including acid dosage and antiscalant addition. As carbonate scaling is directly related with pH level of feed water, present study describes an experimental approach to reduce scaling on RO membrane by lowering the feed water pH by purging $CO_2$. In this comparative study four different conditions including control process (without any scale inhibitor), with dosage of antiscalant, with purging of $CO_2$ and with co addition of antiscalant and $CO_2$ in a feed stream line; it was established that $CO_2$ is a better appliance to reduce carbonate scaling on the membrane surface by reduce pH of feed stream. It was also observed that $CO_2$ and antiscalant mutually function better for scale control.

Membrane Biofouling of Seawater Reverse Osmosis Initiated by Sporogenic Bacillus Strain

  • Lee, Jin-Wook;Ren, Xianghao;Yu, Hye-Weon;Kim, Sung-Jo;Kim, In-S.
    • Environmental Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.141-147
    • /
    • 2010
  • The objective of this study was to assess the biofouling characteristics of the Bacillus biofilm formed on reverse osmosis (RO) membranes. For the study, a sporogenic Bacillus sp. was isolated from the seawater intake to a RO process, with two distinct sets of experiments performed to grow the Bacillus biofilm on the RO membrane using a lab-scale crossflow membrane test unit. Two operational feds were used, 9 L sterile-filtered seawater and 109 Bacillus cells, with flow rates of 1 L/min, and a constant 800 psi-pressure and pH 7.6. From the results, the membrane with more fouling, in which the observed permeate flux decreased to 33% of its initial value, showed about 10 and 100 times greater extracellular polymeric substances and spoOA genes expressions, respectively, than the those of the less fouled membrane (flux declined to 20% of its initial value). Interestingly; however, the number of culturable Bacillus sp. in the more fouled membrane was about 10 times less than that of the less fouled membrane. This indicated that while the number of Bacillus had less relevance with respect to the extent of biofouling, the activation of the genes of interest, which is initiative of biofilm development, had a more positive effect on biofouling than the mass of an individual Bacillus bacterium.

Usable water production from coal seam gas water with a combination of pore control fiber filtration and reverse osmosis

  • Shin, Choon Hwan;Bae, Jun Seok
    • Environmental Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.210-215
    • /
    • 2018
  • Coal seam gas (CSG) water, to be discharged, has been usually treated in reverse osmosis (RO) plants which require extensive and expensive pre-treatment. However, current low gas prices have been a great driver for relevant industries to seek for alternative cost-effective technologies in the aspect of its beneficial use and fit-for-purpose usable water production. In this paper, a combined system with a two-stage pore control fiber (PCF) filtration and a RO system was designed and tested for CSG water treatment. Also, a coagulation reactor was placed in front of the PCF to further enhance suspended solid removal. More than 99% of SS were removed through the PCF filtration while organic, total nitrogen and total phosphorous were mostly removed by the RO system. Especially along with a decrease in conductivity, the total dissolved solid derived from salts was mainly removed in the RO system. Having $OH^-$ undetected, $HCO_3{^-}$ was found to be a dominant compound and its removal efficiency was 97-98% after the RO treatment. And a Fe(III) type of Polytetsu, which was the first to be tested in this paper, was found to be a better option than a Al(III) type of Poly Aluminium Chloride due to its greater coagulation efficiency and applicability at a broader range of pH than the Al(III) type. In addition, there was no noticeable change in oxidation reduction potential, suggesting that an additional process is required to oxidize non-ionic organic carbons (detected as total organic carbon).

Municipal wastewater reclamation for non-potable use using hollow- fiber membranes

  • Waghmare, Sujata;Masid, Smita;Rao, A. Prakash;Roy, Paramita;Reddy, A.V.R.;Nandy, T.;Rao, N.N.
    • Membrane and Water Treatment
    • /
    • v.1 no.3
    • /
    • pp.207-214
    • /
    • 2010
  • Approximately 80% of water used in urban areas reappears as municipal wastewater (MWW). Reclamation of MWW is an attractive proposition under the present scenario of water stressed cities in India. In this paper, we attempted to reclaim MWW using lab-scale hollow- fiber (HF) membrane modules for possible reuse in non-potable applications. Experiments were conducted to evaluate the efficiency of virgin HF ($M_1$) and modified HF ($M_2$) modules. The $M_2$ module consists of HF modified with a skin layer formed through interfacial polymerization of m-phenylenediamine with trimesoyl chloride (MPD-TMC). The molecular weight cut-off (MWCO) of $M_1$ was 44000 g/mol and that of $M_2$ 10000 -14000 g/mol on the basis of rejection of polyethylene glycol. The combination of $M_1$ and $M_2$ modules was able to reduce concentrations of most of the pollutants in sewage and improved the treated water quality to the acceptable limits for non potable reuse applications. It is found that about 98-99% of the initial flux is recovered by the backwashing process, which was approximately two times in a month when operated continuously.

Development of Ion Beverage from Dongchimi Product by Reverse Osmosis Concentration (역삼투막 농축에 의한 동치미를 이용한 이온음료 개발에 관한 연구)

  • Ko, Eun-Jung;Hur, Sang-Sun;Choi, Yong-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.573-578
    • /
    • 1994
  • Dongchimi as a Korean traditional fermented food was studied for the possibility of developing into as an ion beverage. Reverse osmosis process was applied to the concentration of dongchimi juice in this study. Dongchimi was prepared at different concentrations of salt and fermentation temperatures. Mineral components of concentrated dongchimi juice were analyzed and compared with those of ion beverage products. The changes of sugar contents and mineral contents were studied depending on different fermentation temperatures, periods and salt concentration. The amounts of mineral components such as $K^{+},\;Mg^{2+}\;and\;Ca^{2+}$ were increased during fermentation but slightly decreased in the last period. It was found that the concentrated dongchimi juice could be used as an improved ion beverage in future, since the electrolytic dissociation components were much more in the concentrated dongchimi juice than those in the existing ion beverages.

  • PDF

Preparation and Properties of Cellulose Triacetate Membranes for Reverse Osmosis (역삼투용 Cellulose Triacetate 막의 제조와 특성)

  • Nam, Sang-Yong;Hwang, Hae-Young;Koh, Hyung-Chul
    • Membrane Journal
    • /
    • v.17 no.4
    • /
    • pp.277-286
    • /
    • 2007
  • The technology of seawater desalination has been received much attentions to solve the problem of water shortage through all over the world. In this study, it attempts to confirm the use-possibility of cellulose triacetate (CTA) for preparation of reverse osmosis membranes which have been highlighted as high efficiency and low energy consumption process for seawater desalination. The effects of casting dope parameters like an acetyl content, solvent, additives on the membrane performance were investigated. It was possible to produce the membranes which have high water flow rate and salt rejection with the increase of acetyl content and dioxane content among various dioxane/acetone ratios. Acetic acid and maleic acid were preferred for additives to produce high performance membranes. It was verified that $HOLLOSEP^{(R)}$ module which is commercialized CTA membrane by TOYOBO Co. can produce stable water production and high-quality water for long-term operation in the practice plants without any chemical treatments.

Reverse osmosis causes change in volatile compounds in onion juice (역삼투압법에 의한 양파착즙액의 휘발성 성분 변화)

  • Shim, Zen;Jeon, Myeong-Hee;Lee, Dae-Hee;Kim, Yong-Seok;Lee, Sang-Mi;Choi, Jung-Min;Jang, Eun-Ji
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.1
    • /
    • pp.7-11
    • /
    • 2019
  • Reverse osmosis (RO) was applied to onion juice to produce concentrated onion juice with improved flavor. The volatile compound profiles of concentrated onion juice and onion juice were compared using solvent-assisted flavor evaporation followed by gas chromatography-mass spectrometry. Onion juice and RO-concentrated onion juice contained 48 and 62 distinct volatile compounds, respectively, and included alcohols, aldehydes, esters, terpenes, furans, ketones, acids, hydrocarbons, and sulfur-containing compounds. The RO-concentrated onion juice contained a greater number of volatile flavor compounds than did onion juice. Notably, sulfur-containing compounds, which are characteristic volatile flavor compounds in raw onions, were more abundant in the RO-concentrated onion juice than in onion juice. The volatile compound composition indicates that RO-concentration produces good quality onion juice.

Hybrid neutralization and membrane process for fluoride removal from an industrial effluent

  • Meftah, Nouha;Ezzeddine, Abdessalem;Bedoui, Ahmed;Hannachi, Ahmed
    • Membrane and Water Treatment
    • /
    • v.11 no.4
    • /
    • pp.303-312
    • /
    • 2020
  • This study aims to investigate at a laboratory scale fluorides removal from an industrial wastewater having excessive F- concentration through a hybrid process combining neutralization and membrane separation. For the membrane separation operation, both Reverse Osmosis (RO) and Nanofiltration (NF) were investigated and confronted. The optimized neutralization step with hydrated lime allowed reaching fluoride removal rates of 99.1± 0.4 %. To simulate continuous process, consecutive batch treatments with full recirculation of membrane process brines were conducted. Despite the relatively high super saturations with respect to CaF2, no membrane cloaking was observed. The RO polishing treatment allowed decreasing the permeate fluoride concentration to 0.9± 0.3 mg/L with a fluoride rejection rate of 93± 2% at the optimal transmembrane pressure of around 100 psi. When NF membrane was used to treat neutralization filtrate, the permeate fluoride concentration dropped to 1.1± 0.4 mg/L with a fluoride rejection rate of 88± 5% at the optimal pressure of around 80 psi. Thus, with respect to RO, NF allowed roughly 20% decrease of the driving pressure at the expense of only 5% drop of rejection rate. Both NF and RO permeates at optimal operating transmembrane pressures respect environmental regulations for reject streams discharge into the environment.