• Title/Summary/Keyword: reverse operation

Search Result 384, Processing Time 0.024 seconds

Structural analysis of $Al_{x}Ga_{1-x}As/In_{y}Ga_{1-y}$As P-HEMTs reverse engineering (Reverse Engineering을 이용한 $Al_{x}Ga_{1-x}As/In_{y}Ga_{1-y}$As P-HEMTs의 구조적 분석)

  • 김병헌;황광철;안형근;한득영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.255-258
    • /
    • 2001
  • In this paper, DC and small signal characteristics with different physical parameters are expected for p-HEMTs (Pseudomorphic High Electron Mobility Transistors) with different temperatures ranging from 300K to 623K which are widely used for a low noise and/or ultra high frequency device. A device of 0.2$\times$200 ${\mu}{\textrm}{m}$$^2$dimension having very low noise has been chosen to extract the experimental data. Theoretical prediction has been obtained using a simulaor(HELENA) which needs experimental input data extracted from reverse engineering process. From the results, relation between structural parameters and temperature dependency of electrical characteristics are qualitatively explained to use in the design of descrete and integrated circuits to guarantee the optimal operation of the system.

  • PDF

Reverse-Conducting IGBT Using MEMS Technology on the Wafer Back Side

  • Won, Jongil;Koo, Jin Gun;Rhee, Taepok;Oh, Hyung-Seog;Lee, Jin Ho
    • ETRI Journal
    • /
    • v.35 no.4
    • /
    • pp.603-609
    • /
    • 2013
  • In this paper, we present a 600-V reverse conducting insulated gate bipolar transistor (RC-IGBT) for soft and hard switching applications, such as general purpose inverters. The newly developed RC-IGBT uses the deep reactive-ion etching trench technology without the thin wafer process technology. Therefore, a freewheeling diode (FWD) is monolithically integrated in an IGBT chip. The proposed RC-IGBT operates as an IGBT in forward conducting mode and as an FWD in reverse conducting mode. Also, to avoid the destructive failure of the gate oxide under the surge current and abnormal conditions, a protective Zener diode is successfully integrated in the gate electrode without compromising the operation performance of the IGBT.

Anterior Cranial Base Reconstruction with a Reverse Temporalis Muscle Flap and Calvarial Bone Graft

  • Kwon, Seung Gee;Kim, Yong Oock;Rah, Dong Kyun
    • Archives of Plastic Surgery
    • /
    • v.39 no.4
    • /
    • pp.345-351
    • /
    • 2012
  • Background Cranial base defects are challenging to reconstruct without serious complications. Although free tissue transfer has been used widely and efficiently, it still has the limitation of requiring a long operation time along with the burden of microanastomosis and donor site morbidity. We propose using a reverse temporalis muscle flap and calvarial bone graft as an alternative option to a free flap for anterior cranial base reconstruction. Methods Between April 2009 and February 2012, cranial base reconstructions using an autologous calvarial split bone graft combined with a reverse temporalis muscle flap were performed in five patients. Medical records were retrospectively analyzed and postoperative computed tomography scans, magnetic resonance imaging, and angiography findings were examined to evaluate graft survival and flap viability. Results The mean follow-up period was 11.8 months and the mean operation time for reconstruction was $8.4{\pm}3.36$ hours. The defects involved the anterior cranial base, including the orbital roof and the frontal and ethmoidal sinus. All reconstructions were successful. Viable flap vascularity and bone survival were observed. There were no serious complications except for acceptable donor site depressions, which were easily corrected with minor procedures. Conclusions The reverse temporalis muscle flap could provide sufficient bulkiness to fill dead space and sufficient vascularity to endure infection. The calvarial bone graft provides a rigid framework, which is critical for maintaining the cranial base structure. Combined anterior cranial base reconstruction with a reverse temporalis muscle flap and calvarial bone graft could be a viable alternative to free tissue transfer.

Experimental research on the evolution characteristics of displacement and stress in the formation of reverse faults

  • Chen, Shao J.;Xia, Zhi G.;Yin, Da W.;Du, Zhao W.
    • Geomechanics and Engineering
    • /
    • v.23 no.2
    • /
    • pp.127-137
    • /
    • 2020
  • To study the reverse fault formation process and the stress evolution feature, a simulation test system of reverse fault formation is developed based on the analysis of reverse fault formation mechanism. The system mainly consists of simulation laboratory module, operation console and horizontal loading control system, and data monitoring system. It can represent the fault formation process, induce fault crack initiation and simulate faults of different throws. Simulation tests on reverse fault formation process are conducted by using the simulation test system: horizontal loading is added to one side of the model. the bottom rock layer cracks under the effect of the induction device. The crack dip angle is about 29°. A reverse fault is formed with the expansion of the crack dip angle towards the upper right along the fracture surface and the slippage of the hanging wall over the foot wall. Its formation process unfolds five stages: compressive deformation of rock, local crack initiation, reverse fault penetration, slippage of the hanging wall over the foot wall and compaction of fault plane. There is residual structural stress inside rock after fault formation. The study methods and results have guiding and referential significance for further study on reverse fault formation mechanism and rock stress evolution.

Four Quadrant Operations of DC Separately-Excited Motor by the Two Phase Chopper System with Combined Output (2상2중 쵸퍼방식에 의한 직류타여자전동기의 4상한동작)

  • 정연택;한경희;김용주;이승환;방이석
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.4
    • /
    • pp.349-356
    • /
    • 1990
  • In order to control DC motors for electric cars by chopper system, four quadrant operations - forward powering, forward regenerative braking, reverse powering, reverse regenerative braking - are needed. For the four quadrant operations, the separately - excited DC motors are used in this study. The conversion of each quadrant operation has been obtained by 1) adopting the two phase chopper system with combined output for the armature control, and 2) the single phase chopper system for the field control.

  • PDF

Interleaved Current-fed High Step-up DC-DC Converter (인터리브드된 전류 주입형 고승압 DC-DC 컨버터)

  • Lee, Junho
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.586-591
    • /
    • 2020
  • An interleaved current-fed high step-up DC-DC converter is proposed. Besides high voltage gain, a low ripple input current is achieved by adopting interleaving operation. Moreover, soft-switching characteristic of the proposed converter reduces switching losses of active power switches and raise the conversion efficiency. The reverse-recovery problem of output rectifiers is also alleviated by controlling the current changing rates of diodes by utilizing the leakage inductances of transformers. Experimental results obtained on a 200W prototype are discussed.

Rapid Prototyping from Reverse Engineered Geometric Data (리버스 엔지니어링으로 생성된 데이터를 이용한 쾌속 조형 기술 연구)

  • Woo, Hyuck-Je;Lee, Kwan-Heng
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.95-107
    • /
    • 1999
  • The design models of a new product in general are created using clay models or wooden mock-ups. The reverse engineering(RE) technology enables us to quickly create the CAD model of the new product by capturing the surface of the model using laser digitizers or coordinate measuring machines. Rapid prototyping (RP) is another technology that can reduce the product development time by fabricating the physical prototype of a part using a layered manufacturing technique. In reverse engineering process, however, the digitizer generates an enormous amount of point data, and it is time consuming and also inefficient to create surfaces out of these data. In addition, the surfacing operation takes a great deal of time and skill and becomes a bottleneck. In rapid prototyping, a faceted model called STL file has been the industry standard for providing the CAD input to RP machines. It approximates the CAD model of a part using many planar triangular patches and has drawbacks. A novel procedure that overcomes these problems and integrates RE with RP is proposed. Algorithms that drastically reduce the point clouds data have been developed. These methods will facilitate the use of reverse engineered geometric data for rapid prototyping, and thereby will contribute in reducing the product development time.

  • PDF

Reverse Logistics : Research Issues and Literature Review (역방향 로지스틱스 : 과제 및 기존연구)

  • Lee, Dong-Ho;Kim, Hwa-Joong;Kim, Ji-Su
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.34 no.3
    • /
    • pp.270-288
    • /
    • 2008
  • Among various environmental issues, those for worn-out products are increasingly important due to rapid development and improvement of products, shortages of dumping sites and waste-incineration facilities, and legislation pressures and customer recognitions to protect the environment. Under such circumstances, collection and product recovery activities give rise to additional material flows from customers back to collectors and reprocessors. Reverse logistics, the opposite direction of the conventional forward logistics, is concerned with the management of this material flow. In this paper, we consider the emerging concept of reverse logistics. First, the concept of sustainable development is explained to explain the philosophical background of various environmental issues. Second, we explain the basics of reverse logistics, which includes the overall structure and the classification of network types. Finally, we review the previous research articles, especially in the aspect of industrial engineering, after classifying the decision problems into : (a) product recovery strategy; (b) network design and operation; (c) inventory management; (d) disassembly problems; and (e) remanufacturing problems.

Loss of coolant accident analysis under restriction of reverse flow

  • Radaideh, Majdi I.;Kozlowski, Tomasz;Farawila, Yousef M.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1532-1539
    • /
    • 2019
  • This paper analyzes a new method for reducing boiling water reactor fuel temperature during a Loss of Coolant Accident (LOCA). The method uses a device called Reverse Flow Restriction Device (RFRD) at the inlet of fuel bundles in the core to prevent coolant loss from the bundle inlet due to the reverse flow after a large break in the recirculation loop. The device allows for flow in the forward direction which occurs during normal operation, while after the break, the RFRD device changes its status to prevent reverse flow. In this paper, a detailed simulation of LOCA has been carried out using the U.S. NRC's TRACE code to investigate the effect of RFRD on the flow rate as well as peak clad temperature of BWR fuel bundles during three different LOCA scenarios: small break LOCA (25% LOCA), large break LOCA (100% LOCA), and double-ended guillotine break (200% LOCA). The results demonstrated that the device could substantially block flow reversal in fuel bundles during LOCA, allowing for coolant to remain in the core during the coolant blowdown phase. The device can retain additional cooling water after activating the emergency systems, which maintains the peak clad temperature at lower levels. Moreover, the RFRD achieved the reflood phase (when the saturation temperature of the clad is restored) earlier than without the RFRD.

Derivation of Reverse-Time Migration Operator as Adjoint Operation (어드조인트 연산으로서의 역시간 구조보정 연산자 유도)

  • Ji, Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.2
    • /
    • pp.111-123
    • /
    • 2007
  • Unlike the conventional reverse time migration method which is implemented by simply extrapolating wavefield in reverse time, this paper presents a derivation of another reverse time migration operator as the exact adjoint of the presumed forward wavefield extrapolation operator. The adjoint operator is obtained by formulating the forward time extrapolation operator in an explicit matrix equation form and then taking the adjoint to this matrix equation followed by determining the corresponding operator. The reverse time migration operator as the exact adjoint to the implied forward operator can be used not only as a migration algorithm but also as an adjoint operator which is required in the imaging through an inversion such as least-squares migration.