• Title/Summary/Keyword: reused slurry

Search Result 9, Processing Time 0.026 seconds

Characteristics of 2-Step CMP (Chemical Mechanical Polishing) Process using Reused Slurry (재활용 슬러리를 사용한 2단계 CMP 특성)

  • Lee, Kyoung-Jin;Seo, Yong-Jin;Choi, Woon-Shik;Kim, Ki-Wook;Kim, Sang-Yong;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.39-42
    • /
    • 2002
  • Recently, CMP (chemical mechanical polishing) technology has been widely used for global planarization of multi-level interconnection for ULSI applications. However, COO (cost of ownership) and COC (cost of consumables) were relatively increased because of expensive slurry. In this paper, we have studied the possibility of recycle of reused silica slurry in order to reduce the costs of CMP slurry. The post-CMP thickness and within-wafer non-uniformity(WIWNU) were measured as a function of different slurry composition. As a experimental result, the performance of reused slurry with annealed silica abrasive of 2 wt% contents was showed high removal rate and low non-uniformity. Therefore, we propose two-step CMP process as follows In the first-step CMP, we can polish the thick and rough film surface using remaked slurry, and then, in the second-step CMP, we can polish the thin film and fine pattern using original slurry. In summary, we can expect the saving of high costs of slurry.

  • PDF

Characteristics of 2-Step CMP (Chemical Mechanical Polishing) Process using Reused Slurry by Adding of Silica Abrasives (실리카 연마제가 첨가된 재활용 슬러리를 사용한 2단계 CMP 특성)

  • 서용진;이경진;최운식;김상용;박진성;이우선
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.9
    • /
    • pp.759-764
    • /
    • 2003
  • Recently, CMP (chemical mechanical polishing) technology has been widely used for global planarization of multi-level interconnection for ULSI applications. However, COO (cost of ownership) and COC (cost of consumables) were relatively increased because of expensive slurry. In this paper, we have studied the possibility of recycle of roused silica slurry in order to reduce the costs of CMP slurry. The post-CMP thickness and within-wafer non-uniformity (WIWNU) wore measured as a function of different slurry composition. As an experimental result, the performance of reused slurry with annealed silica abrasive of 2 wt% contents was showed high removal rate and low non-uniformity. Therefore, we propose two-step CMP process as follows , In tile first-step CMP, we can polish the thick and rough film surface using remaked slurry, and then, in the second-step CMP, we can polish the thin film and fine pattern using original slurry. In summary, we can expect the saying of high costs of slurry.

A Study on the recycle of CMP Slurry Abrasives (CMP 슬러리 연마제의 재활용에 대한 연구)

  • Lee, Kyoung-Jin;Kim, Gi-Uk;Park, Sung-Woo;Choi, Woon-Shik;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05d
    • /
    • pp.109-112
    • /
    • 2003
  • Recently, CMP (Chemical mechanical polishing) technology has been widely used for global planarization of multi-level interconnection for ULSI applications. However, COO (cost of ownership) and COC (cost of consumables) were relatively increased because of expensive slurry. In this paper, we have studied the possibility of recycle of reused silica slurry in order to reduce the costs of CMP slurry. Also, we have collected the silica abrasive powders by filtering after subsequent CMP process for the purpose of abrasive particle recycling. And then, we annealed the collected abrasive powders to promote the mechanical strength of reduced abrasion force. Finally, we compared the CMP characteristics between self-developed KOH-based silica abrasive slurry and original slurry. As our experimental results, we obtained the comparable removal rate and good planarity with commercial products. Consequently, we can expect the saving of high cost slurry.

  • PDF

A study on the recycle of reused slurry abrasives (CMP 폐슬러리내의 필터링된 연마 입자 재활용에 관한 연구)

  • Kim, Gi-Uk;Seo, Yong-Jin;Park, Sung-Woo;Jeong, So-Young;Kim, Chul-Bok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.50-53
    • /
    • 2003
  • CMP (chemical mechanical polishing) process remained to solve several problems in deep sub-micron integrated circuit manufacturing process. especially consumables (polishing pad, backing film, slurry, pad conditioner), one of the most important components in the CMP system is the slurry. Among the composition of slurries (buffer solution, bulk solution, abrasive particle, oxidizer, inhibitor, suspension, antifoaming agent, dispersion agent), the abrasive particles are important in determining polish rate and planarization ability of a CMP process. However, the cost of abrasives is still very high. So, in order to reduce the high COO (cost of ownership) and COC (cost of consumables) in this paper, we have collected the silica abrasive powders by filtering after subsequent CMP process for the purpose of abrasive particle recycling. And then, we have studied the possibility of recycle of reused silica abrasive through the analysis of particle size and hardness. Also, we annealed the collected abrasive powders to promote the mechanical strength of reduced abrasion force. Finally, we compared the CMP characteristics between self-developed KOH-based silica abrasive slurry and original slurry. As our experimental results, we obtained the comparable removal rate and good planarity with commercial products. Consequently, we can expect the saving of high cost slurry.

  • PDF

A Study on the Recycling of Silica Slurry Abrasives by Filtering (필터링에 의한 실리카 슬러리 연마제의 재활용에 관한 연구)

  • Seo Yong-Jin;Park Sung-Woo;Lee Woo-Sun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.11
    • /
    • pp.551-555
    • /
    • 2004
  • In this paper, in order to reduce the high COO (cost of ownership) and COC (cost of consumables), we have collected the silica abrasive powders by filtering method after subsequent CMP (chemical mechanical polishing) process for the purpose of abrasives recycling. And then, we have studied the possibility of recycle of reused silica abrasive through the analysis of particle size distribution and FE-SEM (field emission-scanning electron microscope) measurements of abrasive powders. It was annealed the collected abrasive powders to promote the mechanical strength of reduced abrasion force. Finally, we compared the CMP characteristics between self-developed KOH-based silica abrasive slurry and original slurry. As our experimental results, we obtained the comparable rate of removal and good planarity with commercial products. Consequently we can expect the saving of high cost slurry.

A Study on Recycle of Abrasive Particles in One-used Chemical Mechanical Polishing (CMP) Slurry (산화막 CMP 슬러리의 연마 입자 재활용에 관한 연구)

  • Park, Sung-Woo;Seo, Yong-Jin;Kim, Gi-Uk;Choi, Woon-Sik;Kim, Chul-Bok;Kim, Sang-Yong;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.145-148
    • /
    • 2003
  • Recently, the recycle of CMP (chemical mechanical polishing) slurries have been positively considered in order to reduce the high COO (cost of ownership) and COC (cost of consumables) in CMP process. Among the composition of slurries (buffer solution, bulk solution, abrasive particle, oxidizer, inhibitor, suspension, antifoaming agent, dispersion agent), the abrasive particles are one of the most important components. Especially, the abrasive particles of slurry are needed in order to achieve a good removal rate. However, the cost of abrasives, is still very high. In this paper, we have collected the silica abrasive powders by filtering after subsequent CMP process for the purpose of abrasive particle recycling. And then, we have studied the possibility of recycle of reused silica abrasive through the analysis of particle size and hardness. Also, we annealed the collected abrasive powders to promote the mechanical strength of reduced abrasion force. Finally, we compared the CMP characteristics between self-developed KOH-based silica abrasive slurry and original slury, As our experimental results, we obtained the comparable removal rate and good planarity with commercial products. Consequently, we can expect the saving of high cost slurry.

  • PDF

Enrichment of valuable elements from vanadium slag using superconducting HGMS technology

  • He, Sai;Yang, Chang-qiao;Li, Su-qin;Zhang, Chang-quan
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.1
    • /
    • pp.17-21
    • /
    • 2017
  • Vanadium slags is a kind of vanadiferous solid waste from steelmaking process. It not only occupies land, pollutes environment, but also leads to waste of resources. Based on the difference of magnetic susceptibility of different particles caused by their chemical and physical properties from vanadium slag, a new technology, superconducting high gradient magnetic separation was investigated for separation and extraction of valuable substances from vanadium slag. The magnetic concentrate was obtained under optimal parameters, i.e., a particle size -200 mesh, a magnetic flux density of 0.8 T, a slurry concentration of 5 g/L, an amount of steel wools of 25 g and a slurry flow velocity of 2 L/min. The content of $Fe_2O_3$ in concentrate could be increased from 39.6% to 55.0% and $V_2O_5$ from 2.5% to 4.0%, respectively. The recovery rate is up to 42.9%, and the vanadium slag has been effectively reused.

SiC Synthesis by Using Sludged Si Power (폐슬러지 Si 분말을 이용한 SiC 제조)

  • 최미령;김영철;장영철
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.3
    • /
    • pp.67-71
    • /
    • 2003
  • Sawing silicon ingot with abrasive slurry generates sludge that includes abrasive powders, cutting oil, and silicon powders. The abrasive powders and cutting oil are being separated and reused. Mixing the remained stodged silicon powders with carbon powders and subsequent heat-treatment are conducted to produce silicon carbide. The size of SiC whiskers and powders was smaller than the conventionally grown silicon carbide whiskers that were synthesized by adding micron-size metal impurities. Impurity related mechanism is attributed to the formation of the silicon carbide whiskers, as metal impurities are contained in the stodged silicon powders.

  • PDF

Ethanol Production from Red, Brown and Green Seaweeds and Biosorption of Heavy Metals by Waste Seaweed Slurry from Ethanol Production (홍조류, 갈조류, 녹조류를 이용한 바이오에탄올 생산 및 폐 해조류 슬러리의 중금속 생물흡착)

  • Sunwoo, InYung;Ra, ChaeHun;Kwon, SeongJin;Heo, JiHee;Kim, Ye-Jin;Kim, JiWoo;Shin, JiHo;Ahn, En-Ju;Cho, YuKyeong;Kim, Sung-Koo
    • KSBB Journal
    • /
    • v.29 no.6
    • /
    • pp.414-420
    • /
    • 2014
  • The seaweeds with high carbohydrate ratio Gelidium amansii, Saccharina japonica and Enteromorpha intestinalis were used as red, brown, and green seaweeds, respectively. Thermal acid hydrolysis, enzymatic saccharification and fermentation were carried out using those seaweeds to produce ethanol. The ethanol concentrations from red, brown and green seaweed were 14.8 g/L, 11.6 g/L and 9.9 g/L, respectively. After the production of ethanol, the seaweeds were reused to absorb heavy metal. The maximum biosorption ratio was Cu(II) (89.6%), Cr(III) (82.9%), Ni(II) (66.1%). Cu(II) had the highest affinity with 3 waste seaweeds. Red seaweed was verified the most effective substrates to both process.