• Title/Summary/Keyword: retrovirus

Search Result 167, Processing Time 0.049 seconds

Foamy Virus Integrase in Development of Viral Vector for Gene Therapy

  • Kim, Jinsun;Lee, Ga-Eun;Shin, Cha-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1273-1281
    • /
    • 2020
  • Due to the broad host suitability of viral vectors and their high gene delivery capacity, many researchers are focusing on viral vector-mediated gene therapy. Among the retroviruses, foamy viruses have been considered potential gene therapy vectors because of their non-pathogenicity. To date, the prototype foamy virus is the only retrovirus that has a high-resolution structure of intasomes, nucleoprotein complexes formed by integrase, and viral DNA. The integration of viral DNA into the host chromosome is an essential step for viral vector development. This process is mediated by virally encoded integrase, which catalyzes unique chemical reactions. Additionally, recent studies on foamy virus integrase elucidated the catalytic functions of its three distinct domains and their effect on viral pathogenicity. This review focuses on recent advancements in biochemical, structural, and functional studies of foamy virus integrase for gene therapy vector research.

Localization of a Human-Specific Retroposon (SINE-R.C2) to Chromosome 6p21.31 by Radiation Hybrid Mapping

  • Kim, Heui-Soo;Timothy J. Crow
    • Journal of Life Science
    • /
    • v.10 no.2
    • /
    • pp.12-13
    • /
    • 2000
  • A human-specific retroposon SINE-R.C2 has been derived from a human endogenous retrovirus HER V-K 10. It is absent in the genome of nonhuman primates and present within the third intron of the human C2 gene that is located in the class III region of the major histocompatibility complex. In the present study, we determined the regional location of the human C2 gene. The analysis of the Genebridge 4 radiation hybrid mapping panel using PCR amplification located the C2 gene between D6S1422 (10.1 cR) and CHLC.GATA4A03 (21.3) with a lod score of>3.0. This allowed us to localize C2 gene on the human chromosome 6 band p21.31.

  • PDF

The Infectivity of Recombinant Porcine Endogenous Retrovirus (PERV-A/C) Is Modulated by Membrane-Proximal Cytoplasmic Domain of PERV-C Envelope Tail (C형 돼지 내인성 레트로바이러스(PERV)의 C-말단 외막당단백질에 의한 재조합 PERV-A/C의 감염력 조절)

  • Kim, Sae-Ro-Mi;Park, Sang-Min;Lee, Kyu-Jun;Lee, Yong-Jin;Bae, Eun-Hye;Park, Sung-Han;Lim, Ji-Hyun;Jung, Yong-Tae
    • Korean Journal of Microbiology
    • /
    • v.46 no.1
    • /
    • pp.15-20
    • /
    • 2010
  • Xenotransplantation of pig organs is complicated by the existence of polytropic replication-competent porcine endogenous retroviruses (PERV) capable of infecting human cells. Two classes of infectious human-tropic replication-competent PERVs (PERV-A and PERV-B) and one class of ecotropic PERV-C are known. The potential for recombination between ecotropic PERV-C and human-tropic PERVs adds another level of infectious risk. A recombinant PERV-A/C (PERV-A14/220) virus is 500-fold more infectious than PERV-A. Two determinants of this high infectivity was identified; one was isoleucine-to-valine substitution at position 140 in RBD (receptor binding domain), and the other lies within the PRR (proline rich region) of the envelope protein. To examine whether the effects of the cytoplasmic tail of the PERV-C Env on fusogenesity also influences infectivity, we constructed a pseudotype retroviral vectors containing MoMLV core protein and PERV envelopes. Pseudotyping experiments with the PERV envelope glycoproteins indicated that recombinant PERV-A/C virus is 10-fold more infectious than PERV-A by lacZ staining. This result supports the suggestion that viral transduction of PERV-A/C is enhanced by a membrane-proximal cytoplasmic amphiphilic ${\alpha}$-helix in PERV-C Env tail.