• Title/Summary/Keyword: retrofitting technique

Search Result 57, Processing Time 0.021 seconds

Experimental and analytical evaluation of a low-cost seismic retrofitting method for masonry-infilled non-ductile RC frames

  • Srechai, Jarun;Leelataviwat, Sutat;Wongkaew, Arnon;Lukkunaprasit, Panitan
    • Earthquakes and Structures
    • /
    • v.12 no.6
    • /
    • pp.699-712
    • /
    • 2017
  • This study evaluates the effectiveness of a newly developed retrofitting scheme for masonry-infilled non-ductile RC frames experimentally and by numerical simulation. The technique focuses on modifying the load path and yield mechanism of the infilled frame to enhance the ductility. A vertical gap between the column and the infill panel was strategically introduced so that no shear force is directly transferred to the column. Steel brackets and small vertical steel members were then provided to transfer the interactive forces between the RC frame and the masonry panel. Wire meshes and high-strength mortar were provided in areas with high stress concentration and in the panel to further reduce damage. Cyclic load tests on a large-scale specimen of a single-bay, single-story, masonry-infilled RC frame were carried out. Based on those tests, the retrofitting scheme provided significant improvement, especially in terms of ductility enhancement. All retrofitted specimens clearly exhibited much better performances than those stipulated in building standards for masonry-infilled structures. A macro-scale computer model based on a diagonal-strut concept was also developed for predicting the global behavior of the retrofitted masonry-infilled frames. This proposed model was effectively used to evaluate the global responses of the test specimens with acceptable accuracy, especially in terms of strength, stiffness and damage condition.

Experimental and numerical study about seismic retrofitting of corrosion-damaged reinforced concrete columns of bridge using combination of FRP wrapping and steel profiles

  • Afshin, Hassan;Shirazi, Mohammad R. Nouri;Abedi, Karim
    • Steel and Composite Structures
    • /
    • v.30 no.3
    • /
    • pp.231-251
    • /
    • 2019
  • In the present study, a numerical and experimental investigation has been carried out on the seismic behavior of RC columns of a bridge which damaged under corrosive environments and retrofitted by various techniques including combined application of CFRP sheets and steel profiles. A novel hybrid retrofitting procedure, including the application of inner steel profiles and outer peripheral CFRP sheets, has been proposed for strengthening purpose. Seven large-scale RC columns of a Girder Bridge have been tested in the laboratory under the influence of simultaneous application of constant axial load and the lateral cyclic displacements. Having verified the finite element modeling, using ABAQUS software, the effects of important parameters such as the corrosion percentage of steel rebars and the number of CFRP layers have been evaluated. Based on the results, retrofitting of RC columns of the bridge with the proposed technique was effective in improving some measures of structural performance such as lateral strength degradation and higher energy absorption capability. However, the displacement ductility was not considerably improved whereas the elastic stiffness of the specimens has been increased.

Assessment of seismic retrofitting for soft-story buildings using gapped inclined brace system

  • Tohamy, Mohamed. A.;Elsayed, Mostafa. M.;Akl, Adel. Y.
    • Earthquakes and Structures
    • /
    • v.22 no.3
    • /
    • pp.319-330
    • /
    • 2022
  • Retrofit of soft-story buildings due to seismic loads using Gap-Inclined-Brace (GIB) system is considered a new retrofit technique that aims to maintain both strength and stiffness of structure. In addition, it provides more ductility and less P-delta effect, and subsequently better performance is observed. In this paper, the effect of the eccentricity between GIB and the retrofitted column due to installation on the efficiency of the retrofitting system is studied. In addition, a modification in the determination method of GIB properties is introduced to reduce the eccentricity effect. Also, the effect of GIB system on the seismic response of mid-rise buildings with different heights considering soft-story at various heights has been studied. A numerical model is developed to study the impact of such system on the response of retrofitted soft-story buildings under the action of seismic loads. To achieve that goal, this model is used to perform a numerical investigation, by considering five case study scenarios represent several locations of soft-story of two mid-rise reinforced concrete buildings. At first, Non-linear static pushover analysis was carried out to develop the capacity curves for case studies. Then, Non-linear time history analyses using ten earthquake records with five peak ground accelerations is performed for each case study scenario before and after retrofitting with GIB. The results show that large GIB eccentricity reduce the ultimate lateral resistance and deformation capacity of the retrofitting system. Moreover, the higher the retrofitted building, the more deformation capacity is observed but without significant increase in ultimate lateral resistance.

Seismic Retrofit Assessment of Different Bracing Systems

  • Sudipta Chakraborty;Md. Rajibul Islam;Dookie Kim;Jeong Young Lee
    • Architectural research
    • /
    • v.25 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • Structural ageing influences the structural performance in a negative way by reducing the seismic resilience of the structure which makes it a major concern around the world. Retrofitting is considered to be a pragmatic and feasible solution to address this issue. Numerous retrofitting techniques are devised by researchers over the years. The viability of using steel bracings as retrofitting component is evaluated on a G+30 storied building model designed according to ACI318-14 and ASCE 7-16. Four different types of steel bracing arrangements (V, Inverted V/ Chevron, Cross/ X, Diagonal) are assessed in the model developed in commercial nu-merical analysis software while considering both material and geometric nonlinearities. Reducing displacement and cost in the structures indicates that the design is safe and economical. Therefore, the purpose of this article is to find the best bracing system that causes minimum displacement, which indicates maximum lateral stiffness. To evaluate the seismic vulnerability of each system, incremental dynamic analysis was conducted to develop fragility curves, followed by the formation of collapse margin ratio (CMR) as stipulated in FEMA P695 and finally, a cost estimation was made for each system. The outcomes revealed that the effects of ge-ometric nonlinearity tend to evoke hazardous consequences if not considered in the structural design. Probabilistic seismic and economic probes indicated the superior performance of V braced frame system and its competency to be a germane technique for retrofitting.

Pinning retrofit technique in masonry with application of polymer-cement pastes as bonding agents

  • Shrestha, Kshitij C.;Pareek, Sanjay;Suzuki, Yusuke;Araki, Yoshikazu
    • Earthquakes and Structures
    • /
    • v.5 no.4
    • /
    • pp.477-497
    • /
    • 2013
  • This paper reports extensive experimental study done to compare workability and bond strength of five different types of polymer-based bonding agents for reinforcing bars in pinning retrofit. In pinning retrofit, steel pins of 6 to 10 mm diameters are inserted into holes drilled diagonally from mortar joints. This technique is superior to other techniques especially in retrofitting historic masonry constructions because it does not change the appearance of constructions. With an ordinary cement paste as bonding agent, it is very difficult to insert reinforcing bars at larger open times due to poor workability and very thin clearance available. Here, open time represents the time interval between the injection of bonding agent and the insertion of reinforcing bars. Use of polymer-cement paste (PCP), as bonding agent, is proposed in this study, with investigation on workability and bond strengths of various PCPs in brick masonry, at open times up to 10 minutes, which is unavoidable in practice. Corresponding nonlinear finite element models are developed to simulate the experimental observations. From the experimental and analytical study, the Styrene-Butadiene Rubber polymer-cement paste (SBR-PCP) with prior pretreatments of drilled holes showed strong bond with minimum strength variation at larger open times.

A Study on the Effects of Urban Public Transportation Retrofitting for Sustainability (지속가능성을 위한 도시 대중교통 레트로핏(Retrofitting) 효과분석)

  • KIM, Seunghyun;NA, Sungyoung;KIM, Jooyoung;LEE, Seungjae
    • Journal of Korean Society of Transportation
    • /
    • v.36 no.1
    • /
    • pp.23-37
    • /
    • 2018
  • In recent years, it is very difficult to construct and expand new infrastructures in a city center because of long-term low growth and lack of space due to urban overcrowding. So, there is a need to study a variety of Retrofitting techniques and urban applications that can lead to sustainable development while efficiently utilizing existing facilities. 'Retrofit' means a sustainable urban retrofitting as a directed alteration of the structures, formations and systems of existing facilities to improve energy, water and waste efficiencies. In this study, we applied a hierarchical network design technique that can reflect the structural hierarchy of a city to study how to retrofit public transportation routes in Seoul. The hierarchical network design means dividing the hierarchy according to the functions of hubs and connecting different hierarchies to form a hierarchical network. As a result of comparing the application results of various retrofitting scenarios of public transport, the differences of daily PKT and PHT by about 2.6~3.2% less than before the improvement address that the convenience of passengers is increased. Therefore, it is expected that if the route planning is established according to the proposed method, it will increase the number of passengers and the operational efficiency by the improved convenience of public transit passengers.

Cost-effective method for reducing local failure of floodwalls verified by centrifuge tests

  • Chung R. Song;Binyam Bekele;Brian D. Sawyer;Ahmed Al-Ostaz;Alexander Cheng;Vanadit-Ellis Wipawi
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.155-165
    • /
    • 2023
  • Hurricane Katrina swept New Orleans, Louisiana, USA, in 2005, causing more than 1,000 fatalities and severe damage to the flood protection system. Recovery activities are complete, however, clarifying failure mechanisms and devising resilient and cost-effective retrofitting techniques for the flood protection system are still of utmost importance to enhance the general structural integrity of water retaining structures. This study presents extensive centrifuge test results to find various failure mechanisms and effective retrofitting techniques for a levee system. The result confirmed the rotational failure and translational failure mechanisms for the London Ave. Canal levee and 17th St. Canal levee, respectively. In addition, it found that the floodwalls with fresh waterstop in their joints perform better than those with old/weathered waterstop by decreasing pore water pressure build-up in the levee. Structural caps placed on the top of the joints between I-walls could also prevent local failure by spreading the load to surrounding walls. At the same time, the self-sealing bentonite-sand mixture installed along the riverside of floodwalls could mitigate the failure of floodwalls by blocking the infiltration of seepage water into the gap formed between levee soils and floodwalls.

Novel NSM configuration for RC column strengthening-A numerical study

  • Gurunandan, M.;Raghavendra, T.
    • Computers and Concrete
    • /
    • v.27 no.5
    • /
    • pp.437-445
    • /
    • 2021
  • Retrofitting of structures has gained importance over the recent years. Particularly, Reinforced Cement Concrete (RCC) column strengthening has become a challenge to the structural engineers, owing to the risks and complexities involved in it. There are several methods of RCC column strengthening viz. RCC jacketing, steel jacketing and Fiber Reinforced Polymer (FRP) wrapping etc., FRP wrapping is the most promising alternative when compared to the others. The large research database shows FRP wrapping, through lateral confinement, improves the axial load carrying capacity of the columns under concentric loading. However, its confining efficiency reduces under eccentric loading. Hence a relative newer technique called Near Surface Mounting (NSM), in which Carbon FRP (CFRP) strips are epoxy grouted to the precut grooves in the cover concrete of the columns, has been thrust domain of research. NSM technique strengthens the column nominally under concentric load case while significantly under eccentric case. A novel configuration of NSM in which the vertical NSM (VNSM) strips are being connected by horizontal NSM (HNSM) strips was numerically investigated under both concentric and eccentric loading. It was found that the configuration with 6 HNSM strips performed better under eccentric loading than under concentric loading, while the configuration with 3 HNSM strips performed better under concentric loading than under eccentric loading. Hence an optimum of 4 HNSM strips is recommended as strengthening measure for the given column specifications. It was also found that Aluminum alloy cannot be used instead of CFRP in NSM applications owing to its lower mechanical properties.

Assessment of masonry arch bridges retrofitted by sprayed concrete under in-plane cyclic loading

  • Mahdi Yazdani;Mehrdad Zirakbash
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.1
    • /
    • pp.57-70
    • /
    • 2024
  • Masonry arch bridges as a vital infrastructure were not designed for seismic loads. Given that masonry arch bridges are made up of various components, their contribution under the seismic actions can be very undetermined and each of these structural components can play a different role in energy dissipation. Iran is known as a high-risk area in terms of seismic excitations and according to the seismic hazard zoning classification of Iran, most of these railway infrastructures are placed in the high and very high seismicity zones or constructed near the major faults. Besides, these ageing structures are deteriorated and thus in recent years, some of these bridges using various retrofitting approaches, including sprayed concrete technique are strengthened. Therefore, investigating the behavior of these restored structures with new characteristics is very significant. The aim of this study is to investigate the cyclic in-plane performance of masonry arch bridges retrofitted by sprayed concrete technique through the finite element simulation. So, by considering the fill-arch interaction, the nonlinear behavior of a bridge has been investigated. Finally, by extracting the hysteresis and enveloping curves of the retrofitted and non-retrofitted bridge, the effect of strengthening on energy absorption and degradation of material has been investigated.