• 제목/요약/키워드: retrofitting of tanks

검색결과 2건 처리시간 0.018초

Buckling conditions and strengthening by CFRP composite of cylindrical steel water tanks under seismic load

  • Ali Ihsan Celik;Mehmet Metin Kose;Ahmet Celal Apay
    • Earthquakes and Structures
    • /
    • 제27권2호
    • /
    • pp.97-111
    • /
    • 2024
  • In this paper, buckling conditions and retrofitting of cylindrical steel water storage tanks with different roof types and wall thicknesses were investigated by using finite element method. Four roof types of cylindrical steel tanks which are open-top, flat-closed, conical-closed and torispherical-closed and three wall thicknesses of 4, 6 and 8 mm were considered in FE modeling of cylindrical steel tanks. The roof shapes significantly affect load distribution on the tank shell under the seismic action. Composite FRP materials are widely used for winding thin-walled cylindrical steel structures. The retrofitting efficiency of cylindrical steel water tank is tested under the seismic loading with the externally bonded CFRP laminates. In retrofitting of cylindrical steel tank, the CFRP composite material coating method was used to improve of seismic performance of cylindrical steel tanks. ANSYS software was used to analyze the cylindrical steel tanks and maximum equivalent (von-Mises) and directional deformation were obtained. Equivalent (von-Mises) stresses significantly decreased due to the coating of the tank shell with FRP composite material. In thin-walled steel structures, excessive stress causes buckling and deformations. Therefore, retrofitting led to decrease in stress, reductions in directional and buckling deformation of the open-top, flat-closed, conical-closed and torispherical-closed tanks.

매몰지 생물반응조 개조를 통한 사체의 안정화 촉진 (Enhanced Stabilization of Carcasses by Retrofitting Burial Sites to Bioreactor)

  • 김건하;전해성
    • 대한환경공학회지
    • /
    • 제36권10호
    • /
    • pp.679-684
    • /
    • 2014
  • 가축전염병 확산을 방지하기 위하여 조성된 긴급매몰지의 경우 침출수 누출이 확인되면 원형저장조로 이설된 경우가 있는데, 저장조 내 낮은 함수율과 혼합문제로 인해 분해가 거의 이루어지지 않고 있는 실정이다. 본 연구에서는 사체의 안정화를 촉진할 수 있도록 원형저장조를 생물반응조(Bioreactor)로 구조를 변경하였다. 침출수를 재순환하고 미생물을 공급하여 안정화에 필요한 미생물활동을 증가시켰다. 원형저장조 내부 유기물의 변형을 고려한 침하량 모형을 사용하여 예측한 침하량 최종치는 생물저장조 구조 변경 후 5년간 약 30%이었다.