• Title/Summary/Keyword: retrofit technique

Search Result 46, Processing Time 0.031 seconds

The Development of Boiler Furnace Pressure Control Algorithm and Distributed Control System for Coal-Fired Power Plant (석탄화력발전소 보일러 노내압력 제어알고리즘과 분산제어시스템의 개발)

  • Lim, Gun-Pyo;Hur, Kwang-Bum;Park, Doo-Yong;Lee, Heung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.3
    • /
    • pp.117-126
    • /
    • 2013
  • This paper is written for the development and application of boiler furnace pressure control algorithm and distributed control system of coal-fired power plant by the steps of design, coding, simulation test, site installation and site commissioning test. The control algorithms were designed in the shape of cascade control for two parts of furnace pressure control and induced draft fan pitch blade by standard function blocks. This control algorithms were coded to the control programs of distributed control systems. The simulator for coal-fired power plant was used in the test step and automatic control, sequence control and emergency stop tests were performed successfully like the tests of the actual power plant. The reliability was obtained enough to be installed at the actual power plant and all of distributed control systems had been installed at power plant and all signals were connected mutually. Tests for reliability and safety of plant operation were completed successfully and power plant is being operated commercially. It is expected that the project result will contribute to the safe operation of domestic new and retrofit power plants, the self-reliance of coal-fired power plant control technique and overseas business for power plant.

Numerical Column Model for Damaged Non-ductile Reinforced Concrete Frame Repaired Using FRP Jacketing System (초기 손상을 입은 비연성 철근콘크리트 골조의 FRP재킷으로 보수된 기둥의 수치해석모델)

  • Shin, Jiuk;Jeon, Jong-Su;Kim, JunHee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.5
    • /
    • pp.291-298
    • /
    • 2018
  • Existing reinforced concrete building structures have seismic vulnerabilities under successive earthquakes (or mainshock-aftershock sequences) due to their inadequate column detailing, which leads to shear failure in the columns. To improve the shear capacity and ductility of the shear-critical columns, a fiber-reinforced polymer jacketing system has been widely used for seismic retrofit and repair. This study proposed a numerical modeling technique for damaged reinforced concrete columns repaired using the fiber-reinforced polymer jacketing system and validated the numerical responses with past experimental results. The column model well captured the experimental results in terms of lateral forces, stiffness, energy dissipation and failure modes. The proposed column modeling method enables to predict post-repair effects on structures initially damaged by mainshock.

Application of meta-model based parameter identification of a seismically retrofitted reinforced concrete building

  • Yu, Eunjong
    • Computers and Concrete
    • /
    • v.21 no.4
    • /
    • pp.441-449
    • /
    • 2018
  • FE models for complex or large-scaled structures that need detailed modeling of structural components are usually constructed using commercial analysis softwares. Updating of such FE model by conventional sensitivity-based methods is difficult since repeated computation for perturbed parameters and manual calculations are needed to obtain sensitivity matrix in each iteration. In this study, an FE model updating procedure avoiding such difficulties by using response surface (RS) method and a Pareto-based multiobjective optimization (MOO) was formulated and applied to FE models constructed with a commercial analysis package. The test building is a low-rise reinforced concrete building that has been seismically retrofitted. Dynamic properties of the building were extracted from vibration tests performed before and after the seismic retrofits, respectively. The elastic modulus of concrete and masonry, and spring constants for the expansion joint were updated. Two RS functions representing the errors in the natural frequencies and mode shape, respectively, were obtained and used as the objective functions for MOO. Among the Pareto solutions, the best compromise solution was determined using the TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) procedure. A similar task was performed for retrofitted building by taking the updating parameters as the stiffness of modified or added members. Obtained parameters of the existing building were reasonably comparable with the current code provisions. However, the stiffness of added concrete shear walls and steel section jacketed members were considerably lower than expectation. Such low values are seemingly because the bond between new and existing concrete was not as good as the monolithically casted members, even though they were connected by the anchoring bars.

Influence of Adjacent Structures on Surface-Wave Dispersion Characteristics and 2-D Resistivity Structure (표면파 분산특성과 전기비저항 분포특성에 대한 인접구조물의 영향)

  • Joh, Sung-Ho;Kim, Bong-Chan;Cho, Mi-Ra;Kim, Suhk-Chol;Youn, Dae-Hee;Hong, Jae-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1318-1327
    • /
    • 2008
  • Geotechnical sites in urban areas may have embedded structures such as utility lines and underground concrete structures, which cause difficulties in site investigation. This study is a preliminary research to establish knowledge base for developing an optimal technique for site investigation in urban areas. Surface-wave method and resistivity survey, which are frequently adopted for non-destructive site-investigation for geotechnical sites, were investigated to characterize effects of adjacent structures. In case of surface wave method, patterns of wave propagation were investigated for typical sets of multi-layered geotechnical profiles by numerical simulation based on forward modeling theory and field experiments for small-size model tests and real-scale tests in the field. In case of resistivity survey, 3-D finite element analyses and field tests were performed to investigate effects of adjacent concrete structures. These theoretical and experimental researches for surface-wave method and resistivity survey resulted in establishing physical criteria to cause interference of adjacent structures in site investigation at urban areas.

  • PDF

Effect of Hydrodemolition on Bonding Strengthof Structures Repaired or Rehabilitated with VES-LMC (VES-LMC로 보수.보강된 구조물의부착강도에 미치는 Hydrodemolition의 영향)

  • Kim, Seong-Kwon;Shim, Do-Sick;Lee, Bong-Hak;Yun, Kyung-Ku
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.397-400
    • /
    • 2006
  • Most of the civil structures in Korea and abroad have many kinds of damages when they are facing over-loaded traffics, long-term serviceability, and severe environmental conditions. Repair, rehabilitation, and retrofit are important for maintaining the serviceability of structures. In recent year, VES-LMC has been widely used as repair material for bridge deck repair and rehabilitation, because the VES-LMC has a various benefits such as traffic opening after 3 hours of curing, higher durability and bond strength. In case of any structure repaired or rehabilitated with VES-LMC, those were influenced capacity of bond between the base layer of slab and VES-LMC as well as physical properties of each other materials. The capacity of bond depended on purity of interface, micro cracks, curing of VES-LMC and so like. A kind of popular concrete repair technique, High pressure water jetting equipment is extremely efficient at removing damaged concrete. Removing damaged or poor quality concrete from sensitive structures such as bridge, tunnels, multi-story car parking decks and runways, using the high pressure water jetting could remove damaged or poor quality concrete remaining healthy and sound concrete. Accordingly, the purpose of this study is that it was to evaluate effect of hydrodemolition on the bond strength of VES-LMC overlay compared with effects of other method such as breaker, untreated. Also, it was evaluated the effect of surface moisture.

  • PDF

A New Waveshaper for Harmonic Mitigation in Vector Controlled Induction Motor Drives

  • Singh, Bhim;Garg, Vipin;Bhuvaneshwari, G.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.152-161
    • /
    • 2008
  • This paper deals with a new wave shaping technique for cost effective harmonic mitigation in ac-dc converter feeding Vector Controlled Induction Motor Drives(VCIMD's) for improving power quality at the point of common coupling(PCC). The proposed harmonic mitigator consists of a polygon connected autotransformer based twelve-pulse ac-dc converter and a small rating passive shunt filter tuned for $11^{th}$ harmonic frequency. This ac-dc converter eliminates the most dominant $5^{th},\;7^{th},\;and\;11^{th}$ harmonics and imposes the reduction of other higher order harmonics from the ac main current, thereby improving the power quality at ac mains. The design of autotransformer is carried out for the proposed ac-dc converter to make it suitable for retrofit applications, where presently a 6-pulse ac-dc converter is used. The effect of load variation on VCIMD is also studied to demonstrate the effectiveness of the proposed ac-dc converter in a wide operating range of the drive. Experimental results obtained on the developed laboratory prototype of the proposed harmonic mitigator are used to validate the model and design of the ac-dc converter.

An interface model for the analysis of the compressive behaviour of RC columns strengthened by steel jackets

  • Minafo, Giovanni
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.233-244
    • /
    • 2019
  • Steel jacketing technique is a retrofitting method often employed for static and seismic strengthening of existing reinforced concrete columns. When no continuity is given to angle chords as they cross the floor, the jacket is considered "indirectly loaded", which means that the load acting on the column is transferred partially to the external jacket through interface shear stresses. The evaluation of load transfer mechanism between core and jacket is not straightforward to be modeled, due to the absence of knowledge of a proper constitutive law of the concrete-to-steel interface and to the difficulties in taking into account the mechanical nonlinearities of materials. This paper presents an incremental analytical/numerical approach for evaluating the compressive response of RC columns strengthened with indirectly loaded jackets. The approach allows calculating shear stresses at the interface between core and jacket and predicting the axial capacity of retrofitted columns. A proper constitutive law is proposed for modelling the interaction between the steel and the concrete. Based on plasticity rules and the non-linear behaviour of materials, the column is divided into portions. After a detailed parametric analysis, comparisons are finally made by theoretical predictions and experimental results available in the literature, showing a good agreement.

Teaching-learning-based strategy to retrofit neural computing toward pan evaporation analysis

  • Rana Muhammad Adnan Ikram;Imran Khan;Hossein Moayedi;Loke Kok Foong;Binh Nguyen Le
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.37-47
    • /
    • 2023
  • Indirect determination of pan evaporation (PE) has been highly regarded, due to the advantages of intelligent models employed for this objective. This work pursues improving the reliability of a popular intelligent model, namely multi-layer perceptron (MLP) through surmounting its computational knots. Available climatic data of Fresno weather station (California, USA) is used for this study. In the first step, testing several most common trainers of the MLP revealed the superiority of the Levenberg-Marquardt (LM) algorithm. It, therefore, is considered as the classical training approach. Next, the optimum configurations of two metaheuristic algorithms, namely cuttlefish optimization algorithm (CFOA) and teaching-learning-based optimization (TLBO) are incorporated to optimally train the MLP. In these two models, the LM is replaced with metaheuristic strategies. Overall, the results demonstrated the high competency of the MLP (correlations above 0.997) in the presence of all three strategies. It was also observed that the TLBO enhances the learning and prediction accuracy of the classical MLP (by nearly 7.7% and 9.2%, respectively), while the CFOA performed weaker than LM. Moreover, a comparison between the efficiency of the used metaheuristic optimizers showed that the TLBO is a more time-effective technique for predicting the PE. Hence, it can serve as a promising approach for indirect PE analysis.

Seismic behavior of RC frames with partially attached steel shear walls: A numerical study

  • Kambiz Cheraghi;Majid Darbandkohi;Mehrzad TahamouliRoudsari;Sasan Kiasat
    • Earthquakes and Structures
    • /
    • v.25 no.6
    • /
    • pp.443-454
    • /
    • 2023
  • Steel shear walls are used to strengthen steel and concrete structures. One such system is Partial Attached Steel Shear Walls (PASSW), which are only connected to frame beams. This system offers both structural and architectural advantages. This study first calibrated the numerical model of RC frames with and without PASSW using an experimental sample. The seismic performance of the RC frame was evaluated by 30 non-linear static analyses, which considered stiffness, ductility, lateral strength, and energy dissipation, to investigate the effect of PASSW width and column axial load. Based on numerical results and a curve fitting technique, a lateral stiffness equation was developed for frames equipped with PASSW. The effect of the shear wall location on the concrete frame was evaluated through eight analyses. Nonlinear dynamic analysis was performed to investigate the effect of the shear wall on maximum frame displacement using three earthquake records. The results revealed that if PASSW is designed with appropriate stiffness, it can increase the energy dissipation and ductility of the frame by 2 and 1.2 times, respectively. The stiffness and strength of the frame are greatly influenced by PASSW, while axial force has the most significant negative impact on energy dissipation. Furthermore, the location of PASSW does not affect the frame's behavior, and it is possible to have large openings in the frame bay.

Seismic vulnerability assessment of a historical building in Tunisia

  • El-Borgi, S.;Choura, S.;Neifar, M.;Smaoui, H.;Majdoub, M.S.;Cherif, D.
    • Smart Structures and Systems
    • /
    • v.4 no.2
    • /
    • pp.209-220
    • /
    • 2008
  • A methodology for the seismic vulnerability assessment of historical monuments is presented in this paper. The ongoing work has been conducted in Tunisia within the framework of the FP6 European Union project (WIND-CHIME) on the use of appropriate modern seismic protective systems in the conservation of Mediterranean historical buildings in earthquake-prone areas. The case study is the five-century-old Zaouia of Sidi Kassem Djilizi, located downtown Tunis, the capital of Tunisia. Ambient vibration tests were conducted on the case study using a number of force-balance accelerometers placed at selected locations. The Enhanced Frequency Domain Decomposition (EFDD) technique was applied to extract the dynamic characteristics of the monument. A 3-D finite element model was developed and updated to obtain reasonable correlation between experimental and numerical modal properties. The set of parameters selected for the updating consists of the modulus of elasticity in each wall element of the finite element model. Seismic vulnerability assessment of the case study was carried out via three-dimensional time-history dynamic analyses of the structure. Dynamic stresses were computed and damage was evaluated according to a masonry specific plane failure criterion. Statistics on the occurrence, location and type of failure provide a general view for the probable damage level and mode. Results indicate a high vulnerability that confirms the need for intervention and retrofit.