• 제목/요약/키워드: retrieval features

검색결과 495건 처리시간 0.02초

Content-Based Image Retrieval Using Combined Color and Texture Features Extracted by Multi-resolution Multi-direction Filtering

  • Bu, Hee-Hyung;Kim, Nam-Chul;Moon, Chae-Joo;Kim, Jong-Hwa
    • Journal of Information Processing Systems
    • /
    • 제13권3호
    • /
    • pp.464-475
    • /
    • 2017
  • In this paper, we present a new texture image retrieval method which combines color and texture features extracted from images by a set of multi-resolution multi-direction (MRMD) filters. The MRMD filter set chosen is simple and can be separable to low and high frequency information, and provides efficient multi-resolution and multi-direction analysis. The color space used is HSV color space separable to hue, saturation, and value components, which are easily analyzed as showing characteristics similar to the human visual system. This experiment is conducted by comparing precision vs. recall of retrieval and feature vector dimensions. Images for experiments include Corel DB and VisTex DB; Corel_MR DB and VisTex_MR DB, which are transformed from the aforementioned two DBs to have multi-resolution images; and Corel_MD DB and VisTex_MD DB, transformed from the two DBs to have multi-direction images. According to the experimental results, the proposed method improves upon the existing methods in aspects of precision and recall of retrieval, and also reduces feature vector dimensions.

이진집합기반에서 칼라와 형태정보를 이용한 영상 검색시스템 설계 (Design of Image Retrieval System using Color and Morphological Informations based on Binary Sets)

  • 김성동;최기호
    • 한국멀티미디어학회논문지
    • /
    • 제3권6호
    • /
    • pp.575-584
    • /
    • 2000
  • 본 논문에서는 이진 집합하에서 칼라 공간과 형태 정보를 가지고 새로운 영상검색 방법을 제시한다. 각 영상에 대한 칼라 공간 정보는 칼라 이진세트에 의해 구해지고 형태정보는 영역 세그멘테이션에 의해서 구해진다. 영상 검객 과정에서, 질의 영상과 데이터베이스 영상들의 칼라 및 영상 이진세트들을 비교하여 검색될 후보영상의 집합이 결정된다. 특히, 유사도 측정은 시차적으로 유사한 칼라들의 분포와 객체의 칼라공간 및 형태 특징에 가중치를 고려한 검색이 가능하도록 하였다. 또한 검색 과정의 속도를 향상시키기 위해 후보영상에 대한 복잡한 유사도 측정을 단순히 수행할 수 있도록 새로운 검색 기법을 제안하였다. 위에서 제안한 방법과 3,000개의 화상들로 이루어진 영상 데이터베이스에 대한 구현 실험을 수행하여 제안된 칼라 공간 및 형태특징을 기반으로 한 영상 검색이 비교적 효과적인 결과를 보였다.

  • PDF

MPEG-7 기반의 이벤트 의미 포토 검색 관리 시스템 (Event Semantic Photo Retrieval Management System based on MPEG-7)

  • 안병태;정범석;이종하
    • 한국콘텐츠학회논문지
    • /
    • 제7권1호
    • /
    • pp.1-9
    • /
    • 2007
  • 의미 포토 검색은 포토의 간단한 시각화 특성과 적합한 의미를 분류하는데 있어서의 갭을 간소화시키는 데 중요한 역할을 한다. 의미 검색을 이용한 효과적인 포토 검색은 포토 검색에 있어서 매우 중요한 과제중의 하나이다. 따라서 우리는 사용자 인터페이스의 포토 주석을 이용한 새로운 이벤트 의미 포토 검색 기법을 제안한다. 본 논문에서는 순수 XML 데이터베이스와 MPEG-7표준을 기반으로 포토 관리 및 의미 검색이 쉬운 포토 앨범 관리 시스템을 설계 및 구현하였다.

Object Cataloging Using Heterogeneous Local Features for Image Retrieval

  • Islam, Mohammad Khairul;Jahan, Farah;Baek, Joong Hwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권11호
    • /
    • pp.4534-4555
    • /
    • 2015
  • We propose a robust object cataloging method using multiple locally distinct heterogeneous features for aiding image retrieval. Due to challenges such as variations in object size, orientation, illumination etc. object recognition is extraordinarily challenging problem. In these circumstances, we adapt local interest point detection method which locates prototypical local components in object imageries. In each local component, we exploit heterogeneous features such as gradient-weighted orientation histogram, sum of wavelet responses, histograms using different color spaces etc. and combine these features together to describe each component divergently. A global signature is formed by adapting the concept of bag of feature model which counts frequencies of its local components with respect to words in a dictionary. The proposed method demonstrates its excellence in classifying objects in various complex backgrounds. Our proposed local feature shows classification accuracy of 98% while SURF,SIFT, BRISK and FREAK get 81%, 88%, 84% and 87% respectively.

심미적 인상을 이용한 이미지 검색에 관한 실험적 연구 (An Exploratory Study of Image Retrieval Using Aesthetic Impressions)

  • 유소영;문성빈
    • 정보관리학회지
    • /
    • 제21권4호
    • /
    • pp.187-208
    • /
    • 2004
  • 이 연구에서는 심미적 인상을 이미지 검색의 고수준 자질로 이용하였다. '심미적'이라는 용어는 심리학, 예술, 문학 등에서 연구되어 왔다. 이 용어는 시각적 지각과 감정의 무의식적이고 즉각적인 측면을 의미한다. 심미적 인상과 관련된 문헌 연구를 통해 4 가지 종류의 심미적 인상을 조작적으로 정의하였다: 강한 인상, 부드러운 인상, 중후한 인상, 세련된 인상. 66개의 회화 이미지 파일을 1,000개의 회화 이미지 중에서 무작위로 추출하였으며 시지각 색상 모형을 이용하여 이 이미지 파일들로부터 저수준 색상 자질을 추출하였다. 이미지의 고수준 자질인 4가지 종류의 심미적 인상은 4명의 평가자가 리커트 7점 척도로 평가한 것을 평균내었다. 검색 실험에서 2명의 피험자는 심미적 인상이나 주제어에 대한 예제 이미지 질의를 이용해서 이미지 검색을 수행하였다. 피험자들은 심미적 인상 기반 이미지 검색 시스템에 대해서 보통 정도의 수준으로 만족했다. 그리고 색상 자질과 심미적 인상 자질을 모두 이용한 이미지 검색의 R-정확률이 색상 자질만을 이용한 이미지 검색의 R-정확률보다 높았다. 그러나 이 연구결과의 일반화를 위해서는 큰 실험 집단을 대상으로 보다 많은 검색 질의를 통한 추후 연구들이 필요할 것으로 생각된다.

HSI 컬러 공간과 신경망을 이용한 내용 기반 이미지 검색 (Content-based Image Retrieval Using HSI Color Space and Neural Networks)

  • 김광백;우영운
    • 한국전자통신학회논문지
    • /
    • 제5권2호
    • /
    • pp.152-157
    • /
    • 2010
  • 컴퓨터와 인터넷의 발달로 정보의 형태가 다양화 되어 문서 위주의 자료들로부터 이미지, 오디오, 비디오, 음성 등의 모습으로 혼합되어 가고 있다. 하지만 대부분의 검색은 문서 위주로 하기 때문에 이미지, 오디오, 비디오 등은 파일의 이름이 명확하게 설정되어 있지 않을 경우에는 검색을 할 수 없다. 이러한 문제점을 해결하기 위해 문서가 아닌 내용을 기반으로 검색하는 방법을 내용 기반 검색이라고 한다. 그리고 이미지의 내용을 기반으로 검색하는 방법을 내용 기반 이미지 검색이라고 한다. 본 논문에서는 HSI 컬러 공간, ART2 알고리즘, SOM 알고리즘을 이용한 내용 기반 이미지 검색 방법을 제안한다. 제안하는 방법은 학습 대상을 선정하기 위해 원 영상의 특징을 분할한다. 그리고 사용자가 학습 대상을 선정하도록 하기 위해 분할된 특징을 SOM 알고리즘에 적용하여 비슷한 특징을 가지는 영상들로 군집화 한다. 군집화된 영상들에 대해 사용자가 학습 대상을 선정하여 ART2 알고리즘에 적용하여 학습한다. 제안한 방법을 적용하여 이미지 검색을 실험한 결과 제안된 방법은 하나의 이미지가 여러 개의 키워드를 가질 수 있기 때문에 이미지에 포함된 정보를 효과적으로 검색하는 것을 확인하였다.

내용 기반 이미지 검색에서 효율적인 색상-모양 표현을 위한 복소 색상 모델 (Complex Color Model for Efficient Representation of Color-Shape in Content-based Image Retrieval)

  • 최민석
    • 디지털융복합연구
    • /
    • 제15권4호
    • /
    • pp.267-273
    • /
    • 2017
  • 각종 디지털 기기와 통신 기술의 발전으로 다양한 멀티미디어 콘텐츠의 생산과 유통이 폭발적으로 증가하고 있다. 이미지와 동영상 등의 멀티미디어 데이터의 검색을 위해서는 기존의 문자 위주의 검색과는 다른 접근 방식이 필요하다. 이미지의 여러 가지 물리적인 특징들을 정량화 하여 분석하고 이를 비교하여 유사한 이미지를 검색하는 내용기반 이미지 검색에서 색상과 모양은 주요 물리적 특징들이다. 지금까지는 색상과 모양을 서로 독립적인 특징으로 분리하여 이용하였지만, 인지적 관점에서 두 특징은 밀접한 관련이 있다. 본 논문에서는 색상과 모양 특징을 동시에 표현하기 위하여 3차원 색상 정보를 2차원 복소수 형식으로 표현하는 복소 색상 모델을 이용하여 색상의 공간적 분포 모양을 기술하는 방법을 제안한다. 복소 이미지를 주파수 변환한 후 저주파 영역의 소수의 계수만으로 복원하는 실험을 통하여 제안된 방법이 색상의 공간적 분포 모양을 효율적으로 표현할 수 있음을 보였다.

Wasserstein Center 손실을 이용한 스케치 기반 3차원 물체 검색 (Sketch-based 3D object retrieval using Wasserstein Center Loss)

  • 지명근;전준철;김남기
    • 인터넷정보학회논문지
    • /
    • 제19권6호
    • /
    • pp.91-99
    • /
    • 2018
  • 스케치 기반 3차원 물체 검색은 다양한 3차원 물체를 사람이 손으로 그린 스케치를 질의(query)로 사용하여 물체를 편리하게 검색하는 방법이다. 본 논문에서는 스케치 기반 3차원 물체 검색을 위해 스케치 CNN(Convolutional Neural Network)과 Wasserstein CNN 모델에 Wasserstein Center 손실을 적용하여 물체의 검색 성공률을 향상시키는 새로운 방법을 제안한다. 제안된 Wasserstein Center 손실이란 각 물체의 클래스(category)의 중심을 학습하고, 동일한 클래스의 특징과 중심 간의 Wasserstein 거리가 작아지도록 만드는 방법이다. 이를 위하여 제안된 3차원 물체 검색은 다음의 단계로 수행된다. 첫 번째로, 3차원 물체의 특징은 3차원 물체를 여러 방향에서 촬영된 2차원 영상의 특징을 CNN을 이용하여 추출하고, 각 영상 특징의 Wasserstein 중심을 계산한다. 두 번째로, 스케치의 특징은 별도의 스케치 CNN을 이용하여 추출하였다. 마지막으로, 추출한 3차원 물체의 특징과 스케치의 특징을 본 논문에서 제안한 Wasserstein Center 손실을 이용하여 학습하고 스케치 기반의 3차원 물체 검색에 적용하였다. 본 논문에서 제안한 방법의 우수성을 입증하기 위하여 SHREC 13과 SHREC 14의 두 가지 벤치마크 데이터 집합을 이용하여 평가하였으며, 제안된 방법이 기존의 스케치 기반 검색방법들과 비교하여 모든 측정 기준에서 우수한 결과를 나타냄을 확인할 수 있었다.

Image Feature Representation Using Code Vectors for Retrieval

  • ;조혜;박종안;박승진;양원일
    • 한국ITS학회 논문지
    • /
    • 제8권3호
    • /
    • pp.122-130
    • /
    • 2009
  • The paper presents an algorithm which uses code vectors to represent comer geometry information for searching the similar images from a database. The comers have been extracted by finding the intersections of the detected lines found using Hough transform. Taking the comer as the center coordinate, the angles of the intersecting lines are determined and are represented using code vectors. A code book has been used to code each comer geometry information and indexes to the code book are generated. For similarity measurement, the histogram of the code book indexes is used. This result in a significant small size feature matrix compared to the algorithms using color features. Experimental results show that use of code vectors is computationally efficient in similarity measurement and the comers being noise invariant produce good results in noisy environments.

  • PDF

영상 특징 선택을 위한 유전 알고리즘 (Genetic Algorithm for Image Feature Selection)

  • 신영근;박상성;장동식
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (B)
    • /
    • pp.193-195
    • /
    • 2006
  • As multimedia information increases sharply, In image retrieval field the method that can analyze image data quickly and exactly is required. In the case of image data, because each data includes a lot of informations, between accuracy and speed of retrieval become trade-off. To solve these problem, feature vector extracting process that use Genetic Algorithm for implementing prompt and correct image clustering system in case of retrieval of mass image data is proposed. After extracting color and texture features, the representative feature vector among these features is extracted by using Genetic Algorithm.

  • PDF