• Title/Summary/Keyword: retention time

Search Result 1,734, Processing Time 0.032 seconds

Comparison of histologic observation and insertional and removal torque values between titanium grade 2 and 4 microimplants (Grade 2, 4 티타늄 마이크로 임플랜트의 식립 및 제거 토크와 식립 후 조직학적 반응의 비교)

  • Kang, Sung-Taek;Sung, Jae-Hyun;Kyung, Hee-Moon;Park, Hyo-Sang;Kwon, Oh-Won
    • The korean journal of orthodontics
    • /
    • v.36 no.3 s.116
    • /
    • pp.171-177
    • /
    • 2006
  • The purpose of this study was to evaluate the light microscopic features and the maximum insertional and removal torque value of microimplants, made from titanium grade 2 or 4, in the tibia of 6 rabbits. First, the maximum torque values of microimplants at implantation were measured. After 2, 8, and 12 weeks of healing time, the microimplant-containing segments of tibia of 2 rabbits were removed and the maximum removal torque of each microimplant were measured. Comparisons of histologic examination and insertional and removal torque values were carried out for the two groups of microimplants. Removal torque values were significantly increased in both groups after 8 and 12 weeks as compared to 2 weeks after implantation. Other values measured did not show any statistically significant differences and there were no histological differences between grade 2 and 4 titanium. Based on these results, this study showed that there were no significant differences between grade 2 and 4 titanium. It seems better to use grade 4 titanium for making microimplants because grade 4 titanium is mechanically harder than grade 2 titanium and has similar retention.

Evaluation of Pollutant Removal Efficiency through Field Test-Bed Experiment in the Rural Small Stream (저수지 유입하천 현장적용실험을 통한 수질정화효율 평가)

  • Choi, Sun Hwa;Oh, Jong Min;Kim, Tae-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.12
    • /
    • pp.1135-1143
    • /
    • 2014
  • This study was carry out to evaluate of water purification in oxidation pond with filamentous algae mat. It is the water treatment process in the small rural streams to remove the organic materials and nutrients. We used the filamentous algae mat (FAM) which selectively predominate the filamentous algae to prevent the additional contamination by algae outflow, and we conducted a experiment on the water treatment process using the aquatic plants such as Eichhornia crassipes. The removal efficiencies (%) of water quality parameters were SS 80.9%, COD 74.6%, TN 76.8%, TP 84.4%, DTN 93.8% and DTP 98.3%, respectively. Temperature, a effect factor, was $21.8{\pm}5.9^{\circ}C$ during the operating period, according to temperature had no effect on the removal efficiencies of pollutants. Hydraulic retention time (HRT) strongly correlated with removal efficiencies (%) of SS and TP having r=0.414 (p<0.005), r=0.446 (p<0.005), respectively, and when HRT was 5day had highly removal efficiency (%) in SS and TP. TN and TP removal efficiency increased with ratio decreasing in both COD/TN and COD/TP of Influent.

Analysis of RCSTP And MWTP Pollutants Treatment Efficiency in Bong-Hwa Gun (봉화군 마을하수도 및 하수처리장의 오염물질 처리 효율 분석)

  • Park, Minsoo;Im, Jiyeol;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.69-79
    • /
    • 2017
  • Protected area of water for supply source is located mostly of rural area in Korea. Normally, sewage treatment system is poor to manage in rural, because low population and density. Rural area need sewage treatment system to supervise supply source of water. In this study, analysis on operation result of 4 RCSTP and MWTP is located at the rural area. Higher concentration of pollutant were inflows to MWTP than RCSTP, and effluent quality standard is satisfaction. However, RCSTP effluent pollutant concentrations was researched higher than MWTP. The organic matter(BOD, COD) were about 5% of a high treatment efficiency to a median. The nutrient(T-N, T-P) were detected Up to high 30%. Also, we analyzed to effect reactor operational parameters on the pollutant treatment efficiency like mixed liquer suspended solid(MLSS), dissolved oxygen(DO) and sludge retention time(SRT). As a result, pollutant treatment efficiency showed fluctuation in accordance with operating condition. Thus, it is necessary to manage the reactor operation condition for management of rural area sewage treatment.

Assessment of Water and Pollutant Mass Balance by Soil Amendment on Infiltration Trench (침투도랑 토양치환의 물순환 및 비점오염물질저감 효과 평가)

  • Jeon, Minsu;Choi, Hyeseon;Kang, Heeman;Kim, Lee-hyung
    • Journal of Wetlands Research
    • /
    • v.22 no.2
    • /
    • pp.145-152
    • /
    • 2020
  • Highways are characterized by high non-point pollutant emissions due to high traffic volumes and sections that cause abrupt change in driving speed (i.e. rest stations, ticketing office, etc.). Most highways in Korea were constructed with layers that do not allow adequate infiltration. Moreover, non-point pollution reduction facilities were not commonly installed on domestic highways. This study was conducted to evaluate a facility treating highway runoff and develop a cost-effective design for infiltration facilities by using soil amendment techniques. Performing soil amendment increased the hydraulic retention time (HRT) and infiltration rate in the facility by approximately 30% and 20%, respectively. The facility's efficiency of removing non-point pollutants (Total Suspend Soiled (TSS), Chemical Oxygen Demand(COD), Biological Oxygen Demand(BOD), Total Nitrogen (TN) and Total Phosphorus, (TP) were also increased by 20%. Performing soil amendment on areas with low permeability can increase the infiltration rates by improving the storage volume capacity, HRT, and infiltration area. The application of infiltration facilities on areas with low permeability should comply with the guidelines presented in the Ministry of Environment's Standards for installation of non-point pollution reduction facilities. However, soil amendment may be necessary if the soil infiltration rate is less than 13 mm/hr.

Development of a Multifunctional Design Concept to Improve Constructed Wetland Performance (인공습지의 성능향상을 위한 다기능 설계기법 개발)

  • Reyes, N.J.D.G.;Choi, H.S.;Kim, L.H.
    • Journal of Wetlands Research
    • /
    • v.22 no.2
    • /
    • pp.161-170
    • /
    • 2020
  • Constructed wetlands (CWs) are widely used to solve water quality problems caused by diffuse pollution from agricultural areas; however, phytoplankton blooms in CW systems can occur due to long hydraulic retention time (HRT), high nutrient loading, and exposure to sunlight. This study was conducted to evaluate the efficiency of a CW designed to treat agricultural diffuse pollution and develop a design concept to improve the nature-based capabilities of the system. Monitoring was conducted to assess contribution of individual wetland components (i.e. water, sediments, and plants) in the treatment performance of the system. During dry days, the turbidity and particulates concentration in the CW increased by 80 to 197% and 10 to 87%, respectively, due to the excessive growth of phytoplankton. On storm events, the concentration of particulates, organics, and nutrients were reduced by 43% to 70%, 22% to 49%, and 15% to 69% due to adequate water circulation and constant flushing of pollutants in the system. Based on the results, adequate water circulation is necessary to improve the performance of the CW. Free water surface CWs are usually designed to have a constant water level; however, the climate in South Korea is characterized by distinct dry and rainy seasons, which may not be suitable for this conventional design. This study presented a concept of multifunctional design in order to solve current CW design problems and improve the flood control, water quality management, and environmental functions of the facility.

Electrochemical Properties of Lithium Secondary Battery and the Synthesis of Spherical Li4Ti5O12 Powder by Using TiCl4 As a Starting Material (TiCl4를 출발원료로한 구형 Li4Ti5O12 분말합성 및 리튬이차 전지특성)

  • Choi, Byung-Hyun;Ji, Mi-Jung;Kwon, Yong-Jin;Kim, Eun-Kyung;Nahm, Sahn
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.669-675
    • /
    • 2010
  • One of the greatest challenges for our society is providing powerful electrochemical energy conversion and storage devices. Rechargeable lithium-ion batteries and fuel cells are among the most promising candidates in terms of energy and power density. As the starting material, $TiCl_4{\cdot}YCl_3$ solution and dispersing agent (HCP) were mixed and synthesized using ammonia as the precipitation agent, in order to prepare the nano size Y doped spherical $TiO_2$ precursor. Then, the $Li_4Ti_5O_{12}$ was synthesized using solid state reaction method through the stoichiometric mixture of Y doped spherical $TiO_2$ precursor and LiOH. The Ti mole increased the concentration of the spherical particle size due to the addition of HPC with a similar particle size distribution in a well in which $Li_4Ti_5O_{12}$ spherical particles could be obtained. The optimal synthesis conditions and the molar ratio of the Ti 0.05 mol reaction at $50^{\circ}C$ for 30 minutes and at $850^{\circ}C$ for 6 hours heat treatment time were optimized. $Li_4Ti_5O_{12}$ was prepared by the above conditions as a working electrode after generating the Coin cell; then, electrochemical properties were evaluated when the voltage range of 1.5V was flat, the initial capacity was 141 mAh/g, and cycle retention rate was 86%; also, redox reactions between 1.5 and 1.7V, which arose from the insertion and deintercalation of 0.005 mole of Y doping is not a case of doping because the C-rate characteristics were significantly better.

Analysis of Bacterial Community Composition in Wastewater Treatment Bioreactors Using 16S rRNA Gene-Based Pyrosequencing (16S rRNA 유전자 기반의 Pyrosequencing을 이용한 하수처리시설 생물반응기의 세균군집구조 분석)

  • Kim, Taek-Seung;Kim, Han-Shin;Kwon, Soon-Dong;Park, Hee-Deung
    • Korean Journal of Microbiology
    • /
    • v.46 no.4
    • /
    • pp.352-358
    • /
    • 2010
  • Bacterial community composition in activated sludge wastewater treatment bioreactors were analyzed using 16S rRNA gene-based pyrosequencing for the four different wastewater treatment processes. Sequences within the orders Rhodocyclales, Burkholderiales, Sphingobacteriales, Myxococcales, Xanthomonadales, Acidobacteria group 4, Anaerolineales, Methylococcales, Nitrospirales, and Planctomycetales constituted 54-68% of total sequences retrieved in the activated sludge samples, which demonstrated that a few taxa constituted majority of the activated sludge bacterial community. The relative ratio of the order members was different for each treatment process, which was assumed to be affected by different operational and environmental conditions of each treatment process. In addition, activated sludge had very diverse bacterial species (Chao1 richness estimate: 1,374-2,902 operational taxonomic units), and the diversity was mainly originated from rare species. Particularly, the bacterial diversity was higher in membrane bioreactor than conventional treatment processes, and the long solids retention time of the operational strategy of the membrane bioreactor appeared to be appropriate for sustaining diverse slow growing bacteria. This study investigating bacterial communities in different activated sludge processes using a high-throughput pyrosequencing technology would be helpful for understanding microbial ecology in activated sludge and for improving wastewater treatment in the future.

The Removal of Organics and Nutrients in an Anoxic/Oxic Process Using Surface-modified Media (표면개질 담체를 이용만 무산소/호기 공정에서의 유기물 및 영양염류 제거)

  • Seon, Yong-Ho
    • KSBB Journal
    • /
    • v.23 no.1
    • /
    • pp.70-76
    • /
    • 2008
  • Surface of hydrophobic media was modified to become hydrophilic by ion beam irradiation. Fixed bed biofilm reactors packed with or without surface modification were used to remove organics, nitrogen, and phosphorus from sewage. This system composed of anoxic/oxic cycles to increase the nutrient removal. A cylindrical polyethylene was used as a packing media in this study. With 12 hours of hydraulic retention time (HRT), the reactors with and without surface modification showed 95% and 92% $COD_{cr}$ removal, respectively. Both reactors showed over 95% $COD_{cr}$ removals for a longer HRT of 16 hours. Nitrogen removal ranged 54.8% to 70.2% for the surface modified system and 57.5% to 76.5% for the non-modified system under same condition. Finally, phosphorus removal ranged 59.4% to 69.8% for the surface modified system and 51.3% to 63.4% for the non-modified system under same condition. From this study organics and phosphorus were better removed in using surface modified media and vice versa for nitrogen removal.

Determination of fucoxanthin in cosmeceutical products by HPLC-PDA (HPLC-PDA를 이용한 기능성 화장품 중 푸코잔틴의 정량)

  • Choi, Jongkeun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.755-761
    • /
    • 2017
  • This study was conducted to establish an analytical method using an HPLC system equipped with a photodiode array (PDA) detector for the quality control of raw materials and cosmeceuticals containing fucoxanthin as an active ingredient. The column was octadecyl-functionalized silica gel and the measurement wavelength of the PDA was set to 499 nm. To validate the analytical method, the linearity of the calibration curve, detection limit, reproducibility and recovery rate were investigated and good results were obtained. The correlation coefficient of the calibration curve was 1.000 and the linearity was good in the concentration range of 0.5 ~ 100 ppm. Moreover, the limit of detection (LOD) was 0.1 ppm and the limit of quantification (LOQ) was 0.5 ppm. The results of the peak reproducibility test used for evaluating the system suitability showed that the RSD (n = 5) of the peak area was 2.0% and that of the retention time was 0.09%. In the spiking test, the recovery rate was $101.6{\pm}0.77%$. The fucoxanthin contents of the two kinds of fucoxanthin-containing raw materials were $49.6{\pm}3.3%$ and $1.03{\pm}0.016%$, respectively. In addition, the fucoxanthin content in the test product, which was intended to be 150 ppm, was $156.7{\pm}4.7ppm$. From the above results, it was concluded that this method could be applied to the quantitative analysis of fucoxanthin in cosmeceuticals.

Clinical Evaluation of Tooth Mobility Following Root Planing and Flap Operation (치근활택술과 치은박리소파술 후 치아동요도 변화에 관한 연구)

  • Pang, Eun-Kyoung;Chai, Jung-Kiu;Kim, Chong-Kwan;Cho, Kyoo-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.4
    • /
    • pp.893-914
    • /
    • 1999
  • Tooth mobility may be the decisive factor that determines whether dental treatment of any kind is undertaken. Although tooth mobility in isolation says little in itself, the finding of increased tooth mobility is of both diagnostic and prognostic importance. Only the detection of an increase or decrease in mobility makes an evaluation possible. Thus prior to treatment, we must understand the pathologic process causing the observed the tooth mobility and decide whether the pattern and degree of observed tooth mobility is reversible or irreversible. And then it must be decided whether retention and treatment or extraction and replacement. The purpose of this study was to compare tooth mobility at different time period during root planing and flap operation and to relate changes in mobility to each treatment method. Twenty-one patients (287 teeth) with chronic adult periodontitis were treated with root planing(control group) and flap operation(experimental group), and each group was divided 3 subgroups based upon initial probing pocket depth (1-3mm, 4-6mm, 7mm and more). Tooth mobility was measured with $Periotest^{(R)}$ at the day of operation, 4 days, 1 week, 2 weeks, 3 weeks, 4 weeks, 8 weeks, 12 weeks after each treatment. Tooth mobility, attachment loss, radiographic bone loss, and bleeding on probing were measured at the day of operation, 4 weeks, 8 weeks and 12 weeks after treatment. 1. In group initial probing depth was 1-3mm, tooth mobility had no significant difference after root planing and flap operation. 2 . In group initial probing depth was 4-6mm, 7mm and more, tooth mobility had decreased in 12 weeks after root planing(p<0.01). And the mobility had increased after flap operation(p<0.01) and was at peak in 1 week, and decreased at initial level in 4 weeks, below the initial level in 12 weeks(p<0.01). 3. In 1 week, significant difference in tooth mobility between control and experimental group was found(p<0.01) but, in 12 weeks no difference between two groups was found. 4. Change of immediate tooth mobility after treatment was more larger in deep pocket than in shallow one. In group with the same probing pocket depth, the change of tooth mobility in molar group was greater than that of premolar group. 5. Tooth mobility before treatment was more strongly correlated with radiographic bone loss (r=0.5325) than probing depth, attachment loss and bleeding on probing, in 12 weeks after treatment, was more strongly correlated with attachment loss($r^2$=0.4761) than probing depth and bleeding on probing. Evaluation of the treatment effect and the prognosis after root planing and flap operation were meaningful on tooth initial probing depth 4mm and more. After flap operation, evaluation of the prognosis should be performed at least in 4 weeks and in 12 weeks after treatment, no difference in tooth mobility between two groups was observed. Radiographic bone loss and attachment loss were good clinical indicators to evaluate tooth mobility.

  • PDF