• Title/Summary/Keyword: retentate

Search Result 60, Processing Time 0.027 seconds

Rejection Properties of Aromatic Pesticides by a Hollow Fiber NF Membrane (중공사 나노여과막을 이용한 방향족 농약의 배제 특성)

  • Jung, Yong-Jun;Kiso, Yoshiaki;Park, Soon-Gil;Kim, Jong-Yong;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.3
    • /
    • pp.296-300
    • /
    • 2004
  • The rejection properties of 6 aromatic pesticides were evaluated by a continuous flow system equipped with a hollow fiber NF membrane. Different from the separation experiment of batch cell, the rejection and the removal could be calculated exactly because the concentration of feed, permeate and retentate was separately obtained. The lowest and the highest rejection were found in carbaryl(54.8%) and methoxychlor(99.2%), respectively, and the removals were always shown higher than rejections. This may be caused by some reasons such as the solute adsorption on the membrane, the variation of feed concentration. Although molecular weight, molecular width regarded as solute characteristics and log P(n-octanol/water partition coefficient) as hydrophobicity could be applied to explain the rejection property, these factors should be considered together for better analysis. According to the higher relationship between log B(solute permeability) and molecular weight, it was revealed that the solute separation with this membrane was influenced more by molecular weight.

Hydrostatic Pressure Effects on Physical Properties of Ultrafiltrated Skim Milk in the Presence of EGTA (EGTA를 첨가한 한외여과 탈지유의 물성에 미치는 초고압의 영향)

  • ;C. Kanno;T. Hagiwara
    • Food Science of Animal Resources
    • /
    • v.21 no.1
    • /
    • pp.32-37
    • /
    • 2001
  • The study investigated the effects of protein concentration, EGTA and strength of hydrostatic pressure on pH, viscosity and turbidity for ultra filtrated skim milk retentates. The results showed that hydrostatic pressure treatments up to 600 MPa did not affect the viscosity of skim milk, while the turbidity of skim milk increased at higher than 200 MPa. Addition of EGTA caused reduction in turbidity of skim milk, two times (2SR) and three times (3SR) concentrated skim milk retentates. Viscosity for 2SR and 3SR increased proportionally to the amount of EGTA, but viscosity of skim milk was not influenced by EGTA. High pressure treatment also did not cause any difference in viscosity and turbidity of skim milk. However, this treatment decreased viscosity and turbidity for 2SR and 3SR. In particular, 200 MPa treatment showed to induce a higher decrease in turbidity compared with 400 MPa.

  • PDF

Ultra- and Nano-Filtration Process Optimization of Isoflavones and Oligosaccharides from Sunmul

  • Kim, Woo-Jung;Kim, Hak-Hyun;Yoo, Sang-Ho
    • Food Science and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.380-386
    • /
    • 2005
  • Optimal conditions of ultrafiltration (UF) and nanofiltration (NF) were investigated for separation and concentration of isoflavones and oligosaccharides from Sunmul. Levels of COD, BOD, and suspended solids (SS) in UF and NF permeates were also determined to evaluate effectiveness of these processes for reducing water pollution. Optimal UF operation conditions to achieve minimal fouling and maximal flux were $33-34^{\circ}C$ operating temperature and 2.3-2.4 bar trans-membrane pressure. Recovery yields of isoflavones and oligosaccharides in UF retentate were 11.49-28.16% and 12.77-27.57%, respectively. Increase in volumetric concentration factor (VCF) resulted in more functional compounds of isoflavones and oligosaccharides passing through UF membrane. Total isoflavone and oligosaccharide yields decreased by 3% as VCF increased from 6.0 to 8.0 and from 8.0 to 10.0, while decreased significantly by 10% as VCF decreased from 4.0 to 6.0. Optimal NF operating conditions were 192-195 psig operating pressure at $30-33^{\circ}C$. Total yields of isoflavones and oligosaccharides significantly decreased at VCF 8.0, whereas did not decrease up to VCF 6.0 during NF operation. Therefore, VCF 6.0 was recommended for economical process. COD and BOD decreased by more than 98% after NF process, and SS were not detected after UF process. These results indicated sequential filtration process was useful for separation of isoflavones and oligosaccharides from Sunmul and for reducing water contaminants.

Exploiting Negative Rejection to Achieve Reverse Selectivity Using Membrane Cascade (음배제율을 활용한 분리막 다단공정 기반의 역선택성 구현 연구)

  • Seung Hwan Kim;Jieun Kang;Jeong F. Kim
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.409-415
    • /
    • 2023
  • Apart from developing better membranes, a clever reconfiguration of membrane cascade process can improve the solute selectivity and minimize solvent consumption. In this work, solvent resistant cellulose nanofiltration membranes were fabricated and the solute rejection performance in various organic solvents were tested. Interestingly, cellulose membranes exhibited unique negative rejection profile in non-polar solvents. Such trend could be exploited to yield reverse selectivity, which showed that low molecular weight solute could be concentrated in the retentate. It was found that more than 3-fold solvent saving could be achieved at the same final purity.

Determination of Loxoprofen Adsorption Isotherms by Frontal Analysis and Pulse Input Method (Frontal Analysis와 Pulse Input Method를 이용한 Loxoprofen의 등온흡착식 결정)

  • Lee, Eun;Park, Joon-Sub;Kim, In-Ho
    • KSBB Journal
    • /
    • v.21 no.5
    • /
    • pp.371-375
    • /
    • 2006
  • Frontal analysis(FA) and Pulsed input method(PIM) have been frequently utilized to measure isotherm of single solute, as well as non-competitive isotherms of two solutes in chromatography(1). FA and PIM were used in this study as complementary methods to measure adsorption isotherms of loxoprofen racemate in HPLC. Prior to FA and PIM experiments, measurements of loxoprofen solubility were made at hexane/ethanol=50/50, 80/20, 95/5(v/v) with acetic acid(0.5%) for adjusting pH. The last composition(95/5) of hexane/ethanol allows us to separate loxoprofen racemate into two forms(retentate, extract). PIM and FA were used to determine the isotherms of re-and ex-loxoprofen.

Concentration of Persimmon Juice by Revers Osmosis System (역삼투 시스템을 이용한 감 과즙의 농축)

  • Kang, Hyun-Ah;Chang, Kyu-Seob
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.279-283
    • /
    • 1997
  • Membrane separation technology was applied to prepare high quality persimmon juice from persimmon, which is produced in large quantities in Korea. The influences of time, pressure, and temperature on permeate flux were studied during concentration by reverse osmosis. The chemical components of retentate were also analyzed. The permeate flux was higher as the operating temperature and pressure were increased, and was influenced more strongly by operating pressure than temperature. Maximum concentration by reverse osmosis employed in this study in the oBrix scale was about 30. Retention percentage of sugar in the persimmon juice which was concentrated by membrane separation system was more than 90% and was not influenced by operating conditions. Retention percentage of volatile components in the same process was more than 60%; it was increased as operating temperature was decreased and pressure was increased.

  • PDF

A Study on the development of cleaner production technology in the production of polysaccharide (다당류 생산공정에서의 청정기술개발에 관한 연구)

  • Jun, Yong-Bo;Kim, Kyung-Su;Bae, Woo-Kun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.3
    • /
    • pp.51-59
    • /
    • 2003
  • In this study, the efficiency of M/F(micro filtration) system was investigated about the wastewater generated from the production process of ${\beta}-glucan$. M/F membrane used the pellicon 2 cassette filter module of millipore(USA) for the operation of M/F plant system. Flux was rised as operation pressure increased, and decreased with the operation time. As concentration ratio increased, the recovery of ${\beta}-glucan$, which was remaind in retentate was effective. As the fermentation solution of ${\beta}-glucan$ reused, the conversion ratio was 42.5%, and the status of fermentation was stable. Based on these results, we suggested that permeate was applicable as water reuse in cleaner production technology.

  • PDF

Production of Functional Whey Protein Concentrate by Monitoring the Process of Ultrafilteration

  • Jayaprakasha, H.M.;Yoon, Y.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.3
    • /
    • pp.433-438
    • /
    • 2005
  • This investigation was undertaken in order to elicit the relationship between the extent of ultrafiltration processing of whey and its effect on composition and yield of resultant whey protein concentrate (WPC). Cheddar cheese whey was fractionated through ultrafiltration to an extent of 70, 80, 90, 95, 97.5% and 97.5% volume reduction followed by I stage and II stage diafiltration. After each level of ultrafiltration, the composition of WPC was monitored. Similarly, the initial whey was adjusted to 3.0, 6.2 and 7.0 pH levels and ultrafiltration was carried out to elicit the effect of pH of ultrafiltration on the composition. Further, initial whey was adjusted to different levels of whey protein content ranging from 0.5 to 1.0 per cent and subjected to ultrafiltration to different levels. The various range of retentate obtained were further condensed and spray dried in order to assess the yield of WPC per unit volume of whey used and the quantity of whey required to produce unit weight of product. With the progress of ultrafiltration, there was a progressive increase in protein content and decrease in lactose and ash content. The regression study led to good relationships with $R^2$ values of more than 0.95 between the extents of permeate removed and the resultant changes in composition of each of the constituents. Whey processed at pH 3.0 had significantly a very low ash content and high protein content as compared to processing at 6.2 and 7.0. The yield of WPC per unit volume of whey varied significantly with the initial protein content. Higher initial protein content led to higher yield of all ranges of WPC and the quantity of whey required per unit weight of spray dried WPC significantly reduced. Regression equations establishing the relationship between initial protein content of whey and the yield of various types of WPC have been derived with very high $R^2$ values of 0.99. This study revealed that, the yield and composition of whey can be monitored strictly by controlling the processing parameters and WPC can be produced depending on the food formulation requirement.

Study on the Effect of Membrane Module Configuration on Pervaporative Performance through Model Simulation (모델모사를 이용한 막모듈 연결 및 배열이 투과증발 막성능에 끼치는 영향에 관한 연구)

  • Yeom, Choong-Kyun;Yoon, Seok-Bok;Park, You-In
    • Membrane Journal
    • /
    • v.18 no.4
    • /
    • pp.294-305
    • /
    • 2008
  • This study was focused on the investigation of the effects of membrane module configuration and the temperature of feed retentate flowing along with module length on membrane performance through model simulation. A simulation model of pervaporative dehydration through membrane module assemble in which a number of unit modules are connected in parallel or in series has been established. In this study, ethanol/water mixture was used as model mixture. Some of permeation parameters in the model were quantified directly from the real dehydration pervaporation of ethanol through a lab-made membrane. By adopting the coefficients determined empirically the simulation model could be of more practical value. The simulation of pervaporation with two basic module configurations, that is, parallel connection and series connection, could present the importance of process parameters such as feed rate, module connection mode, number of stages, and inter-stage heating.

Improved Purification Process for Cholera Toxin and its Application to the Quantification of Residual Toxin in Cholera Vaccines

  • Jang, Hyun;Kim, Hyo-Seung;Kim, Jeong-Ah;Seo, Jin-Ho;Carbis, Rodney
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.1
    • /
    • pp.108-112
    • /
    • 2009
  • A simplified method for the purification of cholera toxin was developed. The 569B strain of Vibrio cholerae, a recognized hyper-producer of cholera toxin, was propagated in a bioreactor under conditions that promote the production of the toxin. The toxin was separated from the bacterial cells using 0.2-${\mu}m$ crossflow microfiltration, the clarified toxin was passed through the membrane into the permeate, and the bacterial cells were retained in the retentate. The 0.2-${\mu}m$ permeate was then concentrated 3-fold and diafiltered against 10 mM phosphate buffer, pH 7.6, using 30-kDa crossflow ultrafiltration. The concentrated toxin was loaded onto a cation exchange column, the toxin was bound to the column, and most of the impurities were passed unimpeded through the column. The toxin was eluted with a salt gradient of phosphate buffer, pH 7.0, containing 1.0 M NaCl. The peak containing the toxin was assayed for cholera toxin and protein and the purity was determined to be 92%. The toxin peak had a low endotoxin level of $3.1\;EU/{\mu}g$ of toxin. The purified toxin was used to prepare antiserum against whole toxin, which was used in a $G_{M1}$ ganglioside-binding ELISA to determine residual levels of toxin in an oral inactivated whole-cell cholera vaccine. The $G_{M1}$ ganglioside-binding ELISA was shown to be very sensitive and capable of detecting as little as 1 ng/ml of cholera toxin.