• Title/Summary/Keyword: retaining walls

Search Result 339, Processing Time 0.027 seconds

Automatic multipoint measuring system using IBM-PC (IBM-PC를 이용한 다점 계측 자동화 시스템)

  • 정상용;양원영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.541-546
    • /
    • 1989
  • In case there are many points to be measured in the field, conventional measuring system requires a lot of manpower and is liable to miss applying the timely countermeasure because processing and analyzing the data obtained also takes much time. Therefore the purpose of this paper is focused on removing the above defects by introducing automatic multi-point measuring system by use of IBM-PC or the compatibles easily at hand nowadays. Principal components of the system is composed of control box, A/D converter. 32 channel 4 wire switch boxes and strain amplifier. An application software was developed for multi point measurement system in order to efficiently evaluate the stability of the structures such as retaining walls.

  • PDF

Stress-Strain Behaviour of Overconsolidated Clay with Loading Rate (하중재하속도에 따른 과압밀점토의 응력-변형 거동)

  • 김병일;신현영;이승원;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.239-244
    • /
    • 2001
  • Natural clayey soils or improved grounds are in a overconsolidated conditions due to changes in vertical stress and pore pressures, desiccation, ageing and so on. These grounds show inelastic stress-strain behaviour characteristics within all range of strain except very small strain (${\gamma}$$\_$s/$\leq$10 ̄$^3$∼10 ̄$^4$%) when construction, such as excavations and retaining walls, is performed. Also it strongly depends on loading rate of current stress path and recent stress path. This study carried out drained stress path tests by varying loading rate of current and recent stress path. Test results indicated that stress-strain behaviour of overconsolidated clay depends on loading rate, especially loading rate of current stress path.

  • PDF

Physical and Mechanical Properties of Permeable Polymer Concrete Utilizing industrial By-Products

  • Sung, ChanYong;Kim, In Su
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42
    • /
    • pp.78-84
    • /
    • 2000
  • Permeable polymer concrete can be applied to roads, sidewalks, river embankment, drain pipes, conduits, retaining walls, yards, parking lots, plazas, interlocking blocks, etc. This study is to explore a possibility of utilizing industrial by-products, a blast furnace slag and a fly ash, as fillers for permeable polymer concrete. Different mixing proportions are tried to find an optimum mixing proportion of permeable polymer concrete. The tests are carried out at 20$\pm$1$^{\circ}C$ and 60$\pm$2$^{\circ}C$ relative humidity. At 7 days of curing, compressive, flexural and splitting tensile strengths and water permeability ranged between 239~285kgf/$\textrm{cm}^2$, 107~133kgf/$\textrm{cm}^2$, 37~46kgf/$\textrm{cm}^2$ and 4.612~5.913$\ell$/$\textrm{cm}^2$/h, respectively. It is concluded that the blast furnace slag and fly ash can be used in permeable polymer concrete.

  • PDF

Flexible Concept Applicable to Railway (유연성 원리를 이용한 철도변 사면보강시스템 적용사레연구)

  • Choi Yu-Kyung;Choi Seung-Il;Ro Byung-Don;Kim Hyung-Min
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.203-210
    • /
    • 2005
  • Rockey slopes adjacent to railways are disclosed from severe weathering and hazard of failure of themselves. Consequently it causes directly rockfall or landsliding on the railway. Conventional solutions-rigid system like rocksheds, shotcrete, retaining walls, etc to these causes are limited to protect train, rail, our properties and lives from the harmful attack - rockfall. debris flow and sliding. Flexible concept for solutions with passive and active type method based on Euro Code 7 capable of high energy absorption and light materials are rapidly replacing the rigid systems with natural friendly, early installation, cost and time saving and reducing danger in works all over the world.

  • PDF

Properties of Porous Polymer Concrete Reinforced Polypropylene Fiber (폴리프로필렌섬유보강 포러스 폴리머 콘크리트의 특성)

  • Kim, Young-Ik;Sung, Chan-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.723-726
    • /
    • 2004
  • Porous polymer concrete can be applied to roads, sidewalks, river embankment, drain pipes, conduits, retaining walls, yards, parking lots, plazas, interlocking blocks, etc. This study is to examine a content ratio of polypropylene fiber to improve bending strength, impact resistance and freezing and thawing rssistance of porous polymer concrete. Also, this study is performed to develop the porous polymer concrete using recycled coarse aggregate and blast furnace slag for application of structures needed permeability. At 7 days of curing, compressive strength, flexural strength, water permeability and flexural load are in the ragge of $17\~21MPa,\;5\~7MPa,\;4.1\times10^{-2}\~7.7\times10^{-2}cm/s$, respectively. It is concluded that the recycled aggregate can be used in the porous polymer concretes.

  • PDF

Structural Stability Study on the Location and Installation form of H-beam Backfill Applied to Top-Down Construction Method (역타공법에 적용되는 뒷채움재 위치 및 설치 형태에 대한 구조 안정성 연구)

  • Shim, Hak-Bo;Jeon, Hyun-Soo;Seok, Won-Kyun;Park, Soon-Jeon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.179-179
    • /
    • 2021
  • Top-Down construction method is a method of connecting a beam to a column and using a strut to support earth retaining walls. This method has the advantage of reducing the process of underground construction by reducing the work of installation. Recently, there are a lot of cases of damage and defect occurring in H-beam backfill applied to Top-Down construction method and the concrete slab supporting H-beam backfill. For this, appropriate methods were suggested through finite element analysis of the position and installation form of the H-beam backfill.

  • PDF

A study on development of disaster-risk assessment criteria for steep slope -Based on the cases of NDMS in Ministry of Interior and Safety- (급경사지 재해위험도 평가 기준 개선 방안 연구 -행정안전부 급경사지 관리시스템 사례를 중심으로-)

  • Suk, Jae-Wook;Kang, Hyo-Sub;Jeong, Hyang-Seon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.372-381
    • /
    • 2019
  • In this study, the National Disaster Management System (NDMS) was analyzed to evaluate the disaster impact assessment standards for steep slopes. Problems in the assessment methods and systems were discovered, which could be reasons for poor reliability. The disaster-risk evaluation index needs improvement to evaluate various types of retaining walls, such as concrete/reinforced soil walls and reinforcing stone masonry. Additionally, using the same score for overturning, bulging, and efflorescence could be reasons for poor reliability, and different weighting factors are needed. Assessment methods are needed to subdivide the social influence evaluation index while considering environmental conditions of steep slopes, such as railroads and reservoirs. For the evaluation of steep slopes, standards for start and end points of steep slopes should be created for effective management, and disaster impact assessment needs to be performed after redevelopment from an advanced index for protection and reinforcement. These problems were derived from a current evaluation system, so a disaster impact assessment is necessary to supplement the results of this study.

Characteristics of Cut Slopes in Baekyang Mountain Area, Busan (부산 백양산지역 절개사면의 분포특성 조사)

  • Song, Young-Suk;Chae, Byung-Gon;Kim, Kyoung-Su;Cho, Yong-Chan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.2
    • /
    • pp.31-39
    • /
    • 2008
  • The information of cut slope in Baekyang Mt. area, Busan is investigated in order to construct the Slope Management System in Urban Area. The slope inspection sheet is made to record the characteristics for cut slopes, and that is capable to be inputted slope information systematically. The cut slopes in Baekyang Mt. area are consisting of 103 slopes. Most of the cut slopes are constructed in cutting slope and retaining wall (CR). The school is mostly distributed adjacent to cut slopes. The average traverse of cut slopes is approximately 122m, and the average height is approximately 18m. The slopes combined with soil and rock are mostly distributed. The retaining wall was installed in the toe part of cut slope in order to increase the slope stability, and the additional reinforcement methods including the anchor, drainage, preventing rock fall, shotcrete and vegetation were installed in the walls and slopes.

  • PDF

Behaviour of geogrid reinforced model retaining wall in active failure state by execution of parallel movement (병진이동으로 인한 주동파괴 시 지오그리드 보강토 모델벽체의 거동)

  • Lee, Kang-Man;Kong, Suk-Min;Lee, Dae-Young;Lee, Yong-Joo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.4
    • /
    • pp.117-127
    • /
    • 2015
  • Recently, there has been a string of negligent accidents for the retaining wall and slope. In order to measure the ground deformation for the MSE wall, the authors carried out the model test to assess behavioral characteristics of geogrid MSE walls in active failure state with different conditions of geogrid reinforcement. The models are built in the soil container box having dimension, 100 cm long, 90 cm height, and 10 cm wide. The reinforcement used in the model test is geogrid (polyvinyl chloride, PVC). Three geogrids are sized by $30cm{\times}60cm$, $30cm{\times}70cm$, $30cm{\times}80cm$ (width ${\times}$ length) respectively. In this study, the laboratory model tests represented for several conditions of the MSE wall, and then its results were compared to 2D FE analysis.

A Study on Flexural Rigidity of Two-row Overlap Pile Wall for Deep Excavation Support (대심도 굴착면 지지를 위한 2열 겹침말뚝의 휨 강성에 관한 연구)

  • Choi, Won-Hyuk;La, You-Sung;Kim, Bum-Joo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.1
    • /
    • pp.33-43
    • /
    • 2018
  • Two-row Overlap Pile wall is a novel retaining wall system with high flexural rigidity and waterproofing for deep excavation support currently being developed in Korea. The Two-row Overlap Pile wall is constructed by making an overlap between consecutive four-axis (or two-axis) auger piles which themselves are overlapped and arranged in zigzag manner. In this study, the flexural rigidity of the Two-row Overlap Pile wall, including the effect of cross-sectional shape, was examined using both theoretical and numerical approaches. The results of investigation suggested that the Two-row Overlap Pile wall formed with two-row piles exhibit greatly higher flexural rigidity than conventional one-row pile walls such as Cast in place pile (CIP) and Secant pile wall (SPW), whereas the effect of overlap length between piles on the flexural rigidity is relatively minimal.