• Title/Summary/Keyword: retained tensile strength

Search Result 81, Processing Time 0.027 seconds

Degradation of Household Rubber Gloves by Edible Oils (가정용 고무장갑의 기름에 의한 내구성 변화)

  • 정혜원;유화숙
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.27 no.9_10
    • /
    • pp.1093-1100
    • /
    • 2003
  • Following a treatment with edible oils and/or washing, the tensile properties of vulcanized rubber were measured to assess the effect of the sorbed edible oil. Rubber soiled with soybean oil, after 8 weeks storage in a 30$^{\circ}C$ incubator, retained 61% of its original strength, and rubber soiled and washed retained the 73%. The strength of the rubber soiled with oil decreased remarkably during the first 2 weeks. After repeating this soiling and/or washing 7 times, the soiled rubber had only 16% of its original strength, the rubber soiled and washed had 45%. In all cases, breaking elongations were not decreased as much as tensile strengths; therefore , more of the elasticity of the rubber remained than did the strength. From these results it is concluded that washing after soiling with oils is very helpful in maintaining the strength of rubber. In this study, three different surfactant solutions, AS, AE and AS/AE, were used. In the AS solution, the contact angle of the soybean oil was greater and the work of the detergency was the smaller than in either the AE or the AS/AE solution, the loss of the strength of the rubber washed in AS solution did not decrease significantly. These results suggest that rolling-up, emulsification and solubilization also participate in the removal of oil from rubber.

Effects of Stability and Volume Fraction of Retained Austenite on the Tensile Properties for Q&P and AM Steels (Q&P와 AM강의 잔류오스테나이트 분율과 안정도에 따른 인장특성 거동)

  • Byun, Sang-Ho;Oh, Chang-Suk;Nam, Dae-Geun;Kim, Young-Seok;Kang, Nam-Hyun;Cho, Kyung-Mox
    • Korean Journal of Materials Research
    • /
    • v.19 no.6
    • /
    • pp.305-312
    • /
    • 2009
  • The effects of Quenching and Partitioning (Q&P) and Annealed Martensite (AM) heat treatment on the microstructure and tensile properties were investigated for 0.24C-0.5Si-1.5Mn-1Al steels. The Q&P steels were annealed at a single phase ($\gamma$) or a dual phase (${\gamma}+{\alpha}$), followed by quenching to a temperature between $M_s$ and $M_f$. Then, enriching carbon was conducted to stabilize the austenite through the partitioning, followed by water quenching. The AM steels were intercritically annealed at a dual phase (${\gamma}+{\alpha}$) temperature and austempered at $M_s$ and $M_s{\pm}50^{\circ}C$, followed by cooling in oil quenching. The dual phase Q&P steels showed lower tensile strength and yieldyield strength than those of the single phase Q&P steels, and tThe elongation for the dual phase Q&P steel was partitioning 100s higher than that of that for the single phase Q&P steels as the partitioning time was less than 100s up to partitioning 100s. For AM steels, the tensile/yield strength decreased and the total elongation increased as the austempering temperature increased. The stability of the retained austenite controlled the elongation for Q&P steels and the volume fraction of the retained austenite controlled the elongation for AM steels.

Effect of Chemical Composition on the Microstructure and Tensile Property in TRIP-assisted Multiphase Steels (TRIP형 복합조직강의 미세조직 및 인장성질에 미치는 화학조성의 영향)

  • Lee, K.Y.;Jang, W.Y.;Kang, J.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.3
    • /
    • pp.127-133
    • /
    • 2003
  • The effect of chemical composition on the microstructural change and tensile property in TRIP-assisted steels with different chemical composition was investigated by using SEM, TEM, XRD and UTM. As a result of microscopic observation, the morphology of retained austenite could be identified as two types; a granular type in a steel containing higher Si and a film type in a steel having higher C. For the case of higher C-containing steel with a tensile strength of 860 MPa and a total elongation of 38%, film-typed retained austenite could be observed between lath bainitic ferrite. Actually, metastable retained austenite was a requisite for the good formability, which means that chemical composition plays a significant role in the microstructure and tensile property of TRIP-assisted steels. With respect to tensile property, the steels containing suitable Si and Mn, respectively, showed a typical TRIP effect in stress-strain curve, while a steel containing higher Mn content exhibited the similar behavior shown in dual phase steel.

Effect of Chemical Composition on Tensile Property in TRIP-assisted Multiphase Steel for Automobile Structure (차량구조용 변태유기소성(TRIP)형 복합조직강의 인장성질에 미치는 화학조성의 영향)

  • Lee, Ki-Yeol;Bang, Il-Hwan;Ma, Ah-Ram;Kim, Young-Sun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.106-113
    • /
    • 2007
  • The effect of chemical composition on the microstructural change and tensile property in TRIP-assisted steels with different chemical composition was investigated by using SEM, TEM, XRD and UTM. As a result of microscopic observation, the morphology of retained austenite could be identified as two types : a granular type in a steel containing higher sillicon and a film type in a steel having higher carbon. For the case of higher carbon-containing steel with a tensile strength of 860 MPa and a total elongation of 38%, film-typed retained austenite could be observed between lath bainitic ferrite. Actually, metastable retained austenite was a requisite for the good formability, which means that chemical composition plays a significant role in the microstructure and tensile property of TRIP-assisted steels. With respect to tensile property, the steels containing suitable silicon and manganese, respectively, showed a typical TRIP effect in stress-strain curve, while a steel containing higher manganese content exhibited the assimilar behavior shown in dual phase steel.

Effect of Initial Structure on the Retained Austenite and Tensile Properties of Fe-Si-Mn-P Steel Sheet (Fe-Si-Mn-P강판의 초기조직변화가 잔류오스테나이트 형성 및 인장성질에 미치는 영향)

  • Moon, Won-Jin;Kang, Chang-Yong;Kim, Han-Goon;Kim, Ki-Don;Sung, Jang-Hyun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.1
    • /
    • pp.10-19
    • /
    • 1997
  • This study has been conducted to investigate the effects of initial structure on the microstructure and tensile properties of high strength trip steel sheet. The initial structure before austempering remarkably influenced the second phase. The specimen with normalized initial structure showed mainly bainitic ferrite and retained austenite, while the as rolled specimen and spherodized specimen showed martensite plus retained austenite and martensite plus bainitic ferrite with small retained austenite, respectively. Two type of retained austenite, film type and granual type were observed in all specimens. The as rolled specimen appeared the highest contents of retained austenite owing to the compressive stress by cold rolling. The contents of retained austenite increased with increasing intercritical annealing temperature and austempering time. Tensile strength showed the highest in the as rolled specimen, while the highest elongation were obtained in the normalized specimen. The maximum T.S.${\times}$El. Value showed in normalized initial structure and increased with increasing intercritical annealing and austempering time. The highest Value of T.S.${\times}$El. obtained at austempering temperature of $400^{\circ}C$ and retained austenite of 12%.

  • PDF

Microstructures and Tensile Properties by Multi-step Isothermal Heat Treatment in Conventional TRIP Steel (상용 TRIP강의 다단 항온 변태 열처리에 따른 미세조직 및 인장 특성)

  • Kim, Kyeong-Won;Lee, Chang-Hoon;Kang, Jun-Yun;Lee, Tae-Ho;Cho, Kyung-Mox
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.3
    • /
    • pp.103-108
    • /
    • 2016
  • In recent years, TRIP steels which are composed of ferrite, bainite, and retained austenite have drawn much attention for automotive sheets due to excellent combination of strength and ductility. The effect of two-step isothermal heat treatment of bainitic transformation on microstructures, especially retained austenites and tensile properties in the conventional TRIP steel was investigated. A two-step isothermal heat treatment, in which 50% bainitic transformation occurred at high temperature, followed by bainitic transformation at low temperature, improves tensile properties, resulting from enhanced mechanical stability of retained austenite against external plastic deformation due to refinement of retained austenites, compared to single-step isothermal heat treatment.

Effect of Reverse Transformation on the Microstructure and Retained Austenite Formation of 0.14C-6.SMn Alloy Steel (0.14C-6.5Mn 합금강의 미세조직과 잔류오스테나이트 형성에 미치는 역변태처리의 영향)

  • Song, K.H.;Lee, O.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.4
    • /
    • pp.253-258
    • /
    • 2000
  • The present study aimed to develop the TRIP(transformation induced plasticity) aided high strength low carbon steel sheets using reverse transformation process. The cold-rolled 0.14C-6.5Mn steel was reverse-transformed by slow heating to intercritical temperature region and air cooling to room temperature. An excellant combination of tensile strength and elongation of $98.3kgf/mm^2$ and 44.4% appears. This combination comes from TRIP phenomena of retained austenite during deformation. The stability of retained austenite Is very Important for the good ductility and it depends on diffusion of carbon and manganese during reverse transformation. The air cooling after holding at intercritical temperature retards the formation of pearlite and provides the carbon enrichment in retained austenite, resulting the increase of elongation in cold-roiled TRIP steel.

  • PDF

Manufacturing of Cold-rolled TRIP Steel by Reversion Process (역변태에 의한 냉연 TRIP강의 제조기술)

  • 진광근;정진환;이규영
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.356-365
    • /
    • 1999
  • The present study is aimed at developing the TRIP(transformation induced plasticity) aided high strength low carbon steel using reversion process. An excellent combination of elongation over 40% and tensile strength abut 100kgf/$\textrm{mm}^2$ achieved in processing of 0.15C-0.5 Si-6Mn steel by slow heating to intercritial temperature region and accelerated cooling into room temperature. This good combination is caused by TRIP phenomena of retained austenite in steels during deformation. The stability of retained austenite is very important for the good ductility and it depends on the diffusion of carbon and manganeses during heat treatment. The accelerated cooling after holding at annealing temperature retards the formation of pearlite and provides the carbon enrichment in retained austenite in steel, resulting in the increase in elongation of the cold-rolled TRIP steel. On the other hand, heat treating the steel at 600$^{\circ}C$ for 5 hour before cold rolling increases elongation but reduces the amount of retained austenite after reversion processing. It is accounted that the heat treating is effective for the increase in the stability of retained austenite.

  • PDF

Effect of Austempering Time on the Microstructure and Mechanical Properties of Ultra-High Strength Nanostructured Bainitic Steels (오스템퍼링 시간에 따른 초고강도 나노 베이나이트강의 미세조직과 기계적 특성)

  • Lee, Ji-Min;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.30 no.2
    • /
    • pp.87-92
    • /
    • 2020
  • This study deals with the effects of austempering time on the microstructure and mechanical properties of ultra-high strength nanostructured bainitic steels with high carbon and silicon contents. The steels are composed of bainite, martensite and retained austenite by austempering and quenching. As the duration of austempering increases, the thickness of bainitic ferrite increases, but the thickness of retained austenite decreases. Some retained austenites with lower stability are more easily transformed to martensite during tensile testing, which has a detrimental effect on the elongation due to the brittleness of transformed martensite. With increasing austempering time, the hardness decreased and then remained stable because the transformation to nanostructured bainite compensates for the decrease in the volume fraction of martensite. Charpy impact test results indicated that increasing austempering time improved the impact toughness because the formation of brittle martensite was prevented by the decreased fraction and increased stability of retained austenite.

A Study on Alkaline Degradation of Cotton Fabric in Washing (세척시 알칼리에 의한 면섬유의 손상에 관한 연구)

  • 박선경;김성련
    • Textile Coloration and Finishing
    • /
    • v.4 no.2
    • /
    • pp.69-75
    • /
    • 1992
  • This study was carried out to compare the effect of caustic soda with the effect of caustic potash on cotton fabric. Instead of caustic potash, sodium carbonate similar in chemical composition to caustic potash was used. The damage of cotton cellulose by repeated washing in various alkaline solutions at 8$0^{\circ}C$, 60 rpm was examined. The damage of cotton cellulose by the variation of copper number, carboxyl content, degree of polymerization and retained tensile strength was estimated. The results obtained at this study are as follows; 1. The damage of cotton by caustic soda was severer than caustic potash. The retained tensile strength at 50 washing cycle in caustic soda was 59% and in sodium carbonate was 80%. 2. By adding soap to caustic soda, the damage of cotton fabric decreased because contact area between fabric and air diminished by foam. 3. Detergency of EMPA 101 in caustic soda was lower than sodium carbonate. Consequently, using caustic soda that damage fabric severely and have lower detergency for caustic potash is unreasonable.

  • PDF