Purpose - This study aims to develop correspondence strategies to the environment change in domestic retail store types. Recently, new types of retails have emerged in retail industries. Therefore, trade area platform has developed focusing on the speed of data, no longer trade area from district border. Besides, 'trade area smart' brings about change in retail types with the development of giga internet. Thus, context shopping is changing the way of consumers' purchase pattern through data capture, technology capability, and algorithm development. For these reasons, the sales estimation model has been shown to be flawed using the notion of former scale and time, and it is necessary to construct a new model. Research design, data, and methodology - This study focuses on measuring retail change in large multi-shopping mall for the outlook for retail industry and competition for trade area with the theoretical background understanding of retail store types and overall domestic retail conditions. The competition among retail store types are strong, whereas the borders among them are fading. There is a greater need to analyze on a new model because sales expectation can be hard to get with business area competition. For comprehensive research, therefore, the research method based on the statistical analysis was excluded, and field survey and literature investigation method were used to identify problems and propose an alternative. In research material, research fidelity has improved with complementing research data related with retail specialists' as well as department stores. Results - This study analyzed trade area survival and its pattern through sales estimation and empirical studies on trade areas. The sales estimation, based on Huff model system, counts the number of households shopping absorption expectation from trade areas. Based on the results, this paper estimated sales scale, and then deducted modified probability model. Conclusions - In times of retail store chain destruction and off-line store reorganization, modified Huff model has problems in estimating sales. Transformation probability model, supplemented by the existing problems, was analyzed to be more effective in competitiveness business condition. This study offers a viable alternative to figure out related trade areas' sale estimation by reconstructing new-modified probability model. As a result, the future task is to enlarge the borders from IT infrastructure with data and evidence based business into DT infrastructure.
The change of shopping environment created new emerging type of shopping center after 1990's, Urban Entertainment Center(UEC) in northen America. One hand traditional shopping center was retail-centered, the other hand UEC is entertainment-centered and offers the trinity of synergy. Each components, that are retail, dining and entertainment, play a role of drawing people, extending duration of visiting and making people revisit then the synergy makes commercial profit in shopping center. As northen America many of shopping centers with complex have been built in Korea since 2000 and some projects is planning by the change of shopping environment and regenerating urban. Although the term of "UEC" is used in Korea, it seems to be added entertainment facilities to shopping center without considering on commercial strategy. This study will take a look at mix and duration of visit which ULI stresses in UEC development and comparing with those of Yongsan Station and Chyeongrangri Station which are built recently in seoul, it will get characters and situation of these UECs. Finally, the analysis is to be used as a planning data in UEC development.
Journal of the Korean Society of Clothing and Textiles
/
v.41
no.2
/
pp.266-280
/
2017
This study predicted consumer approach/avoidance behavior through consumer emotional experiences and examined the moderating effect of perceived surprises in the context of digital signage in store environments. A self-administered questionnaire consisted of consumer emotional experience (e.g., pleasure, arousal, and dominance), approach-avoidance behavior and perceived surprise by digital signage. A total of 278 usable responses were obtained from consumers who experienced digital signage at fashion retail stores. The findings support the Mehrabian-Russell model in the context of digital signage. Approach behavior was predicted by pleasure and arousal emotional experience, while avoidance behavior was predicted by dominance. The moderating effect of perceived surprise was also indicated in the effect of emotional experience on approach or avoidance behavior. In the high level of perceived surprise, pleasure and arousal had significant effects on approach behavior, whereas dominance had significant effect on avoidance behavior. This study discussed theoretical and managerial implications for creating emotional experiences and developing strategic store management by utilizing new digital technology within the fashion retail environments.
The purpose of this study was to explore differences in determinants of loyalty, including years of loyalty and use of word-of-Mouth (WOM), across rural and urban apparel shoppers. The secondary data used for this study was collected by BIG research in their Consumer Intentions and Actions Study. Hierarchical multiple regression analysis was conducted, and the results showed that four store attributes (fashionability, promotion, shopping environment, and retail basics) were positively related to store loyalty. Findings of the study also revealed that the effect of fashionability and retail basics on store loyalty differed significantly across rural and urban consumers while promotion and shopping environment were not different predictors of store loyalty between rural and urban apparel shoppers. Specifically, store attributes of fashionability were stronger antecedents of loyalty for women's clothing shoppers in urban areas than rural shoppers. The retail basics had a greater influence on store loyalty among women's apparel customers in rural areas than customers in urban areas.
Purpose: The aim of this study is to understand the internal and external responses that consumers experience when they are exposed to an innovative system in retail stores. This study considered the SST(Self-Service Technology) system in a retail setting as a type of functional environmental stimuli and selected a smart shopping cart as an example of SST system. The influences of functional environmental stimuli on consumers' emotional, cognitive, and behavioral responses were examined by applying S-O-R model. In addition, this study attempted to extend the traditional S-O-R model by (a) incorporating personal characteristics variables such as time pressure and perceived crowding and (b) considering not only emotional but also cognitive aspects of consumers' internal responses. Research Design, Data, and Methodology: This study used a video-scenario technique. Participants watched a video about grocery shopping situations using a smart shopping cart and responded to their emotional, cognitive, and behavioral responses. An online survey was conducted using Amazon's Mechanical Turk (N = 185). All participants were US consumers over 20 years old and had been shopping at the grocery store in the last month. Data were analyzed through structural equations modeling with AMOS 20. Results: Test results showed that consumers who perceived higher levels of time pressure and perceived crowding in usual shopping situations were more likely to evaluate the SST system favorably. The results showed that personal characteristics have a significant impact on consumers' evaluation of functional environmental stimuli in retail setting. As consumers evaluated the SST system favorably, they experienced more positive affect and less negative affect during their shopping behaviors. Positive affect led to good service quality inference, which further increased patronize intention. However, negative affect did not show a significant impact on service quality inference, but only on patronize intention. Conclusions: This study attempted to investigate the influence of SST system by extending the traditional S-O-R model. This study classified the SST system as functional environmental stimulus of retail stores and analyzed the effect of stimulus on consumers' internal and external responses. The results of this study showed that the introduction of innovative SST can serve as an effective store differentiation strategy in an increasingly competitive retail environment.
Purpose - This paper examines the explanatory power of the agency theory in the determination of cash holdings for Korean retail firms. If the agency theory holds, a firm with strong corporate governance structure tends to have low cash holdings. A strong governance structure makes the CEO of this firm to behave in the interests of shareholders and thus the CEO has low incentive to stockpile cash holdings, which can be easily diverted for the CEO's own managerial purposes. We investigate this relationship between corporate governance structure and cash holdings, by using corporate governance scores as a proxy variable that captures the effectiveness of corporate governance mechanism. Research design, data, and methodology - We adopt the sample of publicly listed retail firms in KOSPI market from 2005 to 2013. Financial and accounting statements are gathered from the WISEfn database. We also use the corporate governance scores published by Korean Corporate Governance Service. The relationship between the corporate governance scores and cash holdings is cross-sectionally estimated based on the ordinary least square method. This estimation method is widely accepted in the existing literature. The sample of large conglomerates, Chebol, and the remainder firms are separately examined as well, to account for the distinctive internal financing environment in these large conglomerates. Results - We mainly contribute to the extant literature by providing empirical evidence against the agency theory of cash policy. Unlike the prediction of agency theory, we confirm statistically insignificant or even positive correlations between the set of corporate governance scores and cash-asset ratios. Almost all the major corporate governance attributes including total score, shareholder rights, board structure, and the quality of information disclosure do not show negative correlations with cash holdings, which poses a strong challenge to the validity of the agency theory in the determination of retail firms' cash holdings. Conclusions - This study presents interesting empirical results with respect to the cash policy in Korean retail firms. Consistent to prior studies, I verify that the agency theory only limitedly explains the level of cash holdings. Future studies may obtain more robust results by examining a longer sample period.
Muhammad Umer Farooq;Mustafa Latif;Waseemullah;Mirza Adnan Baig;Muhammad Ali Akhtar;Nuzhat Sana
International Journal of Computer Science & Network Security
/
v.23
no.9
/
pp.1-7
/
2023
Demand prediction is an essential component of any business or supply chain. Large retailers need to keep track of tens of millions of items flows each day to ensure smooth operations and strong margins. The demand prediction is in the epicenter of this planning tornado. For business processes in retail companies that deal with a variety of products with short shelf life and foodstuffs, forecast accuracy is of the utmost importance due to the shifting demand pattern, which is impacted by an environment of dynamic and fast response. All sectors strive to produce the ideal quantity of goods at the ideal time, but for retailers, this issue is especially crucial as they also need to effectively manage perishable inventories. In light of this, this research aims to show how Machine Learning approaches can help with demand forecasting in retail and future sales predictions. This will be done in two steps. One by using historic data and another by using open data of weather conditions, fuel, Consumer Price Index (CPI), holidays, any specific events in that area etc. Several machine learning algorithms were applied and compared using the r-squared and mean absolute percentage error (MAPE) assessment metrics. The suggested method improves the effectiveness and quality of feature selection while using a small number of well-chosen features to increase demand prediction accuracy. The model is tested with a one-year weekly dataset after being trained with a two-year weekly dataset. The results show that the suggested expanded feature selection approach provides a very good MAPE range, a very respectable and encouraging value for anticipating retail demand in retail systems.
Muhammad Umer Farooq;Mustafa Latif;Waseem;Mirza Adnan Baig;Muhammad Ali Akhtar;Nuzhat Sana
International Journal of Computer Science & Network Security
/
v.23
no.8
/
pp.210-216
/
2023
Demand prediction is an essential component of any business or supply chain. Large retailers need to keep track of tens of millions of items flows each day to ensure smooth operations and strong margins. The demand prediction is in the epicenter of this planning tornado. For business processes in retail companies that deal with a variety of products with short shelf life and foodstuffs, forecast accuracy is of the utmost importance due to the shifting demand pattern, which is impacted by an environment of dynamic and fast response. All sectors strive to produce the ideal quantity of goods at the ideal time, but for retailers, this issue is especially crucial as they also need to effectively manage perishable inventories. In light of this, this research aims to show how Machine Learning approaches can help with demand forecasting in retail and future sales predictions. This will be done in two steps. One by using historic data and another by using open data of weather conditions, fuel, Consumer Price Index (CPI), holidays, any specific events in that area etc. Several machine learning algorithms were applied and compared using the r-squared and mean absolute percentage error (MAPE) assessment metrics. The suggested method improves the effectiveness and quality of feature selection while using a small number of well-chosen features to increase demand prediction accuracy. The model is tested with a one-year weekly dataset after being trained with a two-year weekly dataset. The results show that the suggested expanded feature selection approach provides a very good MAPE range, a very respectable and encouraging value for anticipating retail demand in retail systems.
The marketing environment around the Korean retail stores is becoming increasingly voltage due to the recent changes in the marketplace. These changes are not only offering business opportunities but also posing competitive threats for many retailers these days. The key to survival and growth of these retail stores lies in developing and delivering quality services. This article reports the findings of a field survey which measured customers current perceptions of six different types of stores in terms of various service dimensions. The store types examined in the study were: traditional markets, department stores, shopping centers$.$supermarkets, convenience stores, discount stores, and membership wholesale clubs. The study also makes an attempt to determine service dimensions which have significant impact on customer perceptions across different store types. By analyzing the gap between how stores are perceived and how they should be perceived, the article discusses and suggests strategic directions for each type of retail stores.
The Transactions of the Korean Institute of Electrical Engineers A
/
v.54
no.10
/
pp.500-506
/
2005
With the advent of electric power systems moving to a deregulated retail electricity market environment, calculating distribution service tariffs has become a challenging theme for distribution industries and tariff regulators. As distribution business remains as a monopoly, it is necessary to be regulated. And as multiple distribution companies compete with each other, it would be efficient to adopt competition to the determination of distribution service tariffs. This paper proposes a method to calculate distribution service tariffs using yardstick regulation, which can lead to competition among multiple distribution companies. The proposed method takes into account not only recovering revenue requirements but also the advantages of the yardstick regulation based on long-term marginal costs of distribution network expansion algorithms. A computer simulation is carried out to illustrate effectiveness of the proposed method and it is estimated that the algorithm can be applied to compute the distribution service tariffs under retail electricity markets.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.