• 제목/요약/키워드: restriction fragment length polymorphism

Search Result 510, Processing Time 0.042 seconds

Comparison of Terminal-restriction Fragment Length Polymorphism (T-RFLP) Analysis and Sequencing of 16S rDNA Clones in marine sediments

  • Lee Jung-Hyun
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.15-21
    • /
    • 2002
  • Terminal-restriction fragment length polymorphism (T-RFLP) analysis has been optimized by using in vitro model community composed of genomic DNAs of known bacterial strains and has been applied to assess the bacterial community structure in marine sediments. The specific fluorescence-labeled terminal restriction fragments (T-RFs) between 39 and 839 base long specifying each strain were precisely measured for known bacterial strains. The addition of a co-solvent (dimethylsulfoxide or glycerol) into PCR reactions has reduced differential PCR amplification. Comparative bacterial community structure was investigated for pristine and polluted sediments. A complex T-RFLP pattern showing complex bacterial community structure was obtained in the pristine sediment, whereas simple T-RFLP pattern (low bacterial diversity) was shown in polluted sediments where caged aquaculture has been conducted for several years. The results of T-RFLP analysis were compared with that of cloning and sequencing 16S rDNA clones from the same sediments. Sequence analysis of 16S rDNA clones (72) of the pristine sediment revealed a diverse collection of lineages, largely of the class Proteobacteria ($6\%$ alpha subdivision, $46\%$ gamma subdivision, $13\%$ delta subdivision, and $3\%$ epsilon subdivision), Nitrospina $(8\%)$, high G+C gram positive $(8\%)$, Verrucomicrobia $(7\%)$, and Planctomycetes $(6\%)$. In the contaminated sediments, 17 $(59\%)$ of the 16S rDNA clones (29) were related to Campylobacter and symbiont of Rimicaris exoculata belonging to epsilon subdivision of Proteobacteria. The results obtained indicated that T-RFLP analysis is a rapid and precise technique for comparative bacterial community analysis.

  • PDF

Identification of Mycobacterium species by rpoB Gene PCR-RFLP (rpoB 유전자의 PCR-RFLP를 이용한 Mycobacterium 균종 동정의 유용성)

  • Yu, Kyong-Nae;Park, Chung-Ho
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.38 no.3
    • /
    • pp.158-165
    • /
    • 2006
  • Although Mycobacterium tuberculosis complex strains remain responsible for the majority of diseases caused by mycobacterial infections worldwide, the increase in HIV infections has allowed for the emergence of other non-tuberculous mycobacteria as clinically significant pathogens. However, Mycobacterium species has a long period of incubation, and requires serious biochemical tests such as niacin, catalase, and nitrate test that are often tedious. The development of rapid and accurate diagnostics can aid in the early diagnosis of disease caused by Mycobacterium. The current DNA amplification and hybridization methods that have been developed target several genes for the detection of mycobacterial species such as hps65, 16S rDNA, rpoB, and dnaj. These methods produce rapid and accurate results. In this study, PCR-restriction fragment length polymorphism analysis(PCR-RFLP) based on the region of the rpoB gene was used to verify the identification of non-tuburculosis Mycobacterium species. A total of 8 mycobacterial reference strains and 13 clinical isolates were digested with restriction enzymes such as Msp I in this study. The results of using this process clearly demonstrated that all 13 specimens were identified by rpoB gene PRA method. The PCR-RFLP method based on the rpoB gene is a simple, rapid, and accurate test for the identification of Mycobacterium.

  • PDF

Identification of Pork Contamination in Meatballs of Indonesia Local Market Using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) Analysis

  • Erwanto, Yuny;Abidin, Mohammad Zainal;Muslim, Eko Yasin Prasetyo;Sugiyono, Sugiyono;Rohman, Abdul
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.10
    • /
    • pp.1487-1492
    • /
    • 2014
  • This research applied and evaluated a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) using cytochrome b gene to detect pork contamination in meatballs from local markets in Surabaya and Yogyakarta regions, Indonesia. To confirm the effectiveness and specificity of this fragment, thirty nine DNA samples from different meatball shops were isolated and amplified, and then the PCR amplicon was digested by BseDI restriction enzyme to detect the presence of pork in meatballs. BseDI restriction enzyme was able to cleave porcine cytochrome b gene into two fragments (131 bp and 228 bp). Testing the meatballs from the local market showed that nine of twenty meatball shops in Yogyakarta region were detected to have pork contamination, but there was no pork contamination in meatball shops in Surabaya region. In conclusion, specific PCR amplification of cytochrome b gen and cleaved by BseDI restriction enzymes seems to be a powerful technique for the identification of pork presence in meatball because of its simplicity, specificity and sensitivity. Furthermore, pork contamination intended for commercial products of sausage, nugget, steak and meat burger can be checked. The procedure is also much cheaper than other methods based on PCR, immunodiffusion and other techniques that need expensive equipment.

Fingerprinting of Listeria monocytogenes by Amplified Fragment Length Polymorphism Analysis

  • Jin, Hyun-Seok;Kim, Jong-Bae
    • Biomedical Science Letters
    • /
    • v.8 no.1
    • /
    • pp.29-37
    • /
    • 2002
  • Listeria monocytogenes poses an increasing health risk, which in part is due to increasing health risk, consumption of ready-to-eat food products and the introduction of increasing numbers of food products from regions with different dietary habits. L. monocytogenes can be present in meat, shellfish, vegetables, unpasteurised milk and soft cheese and poses a risk if food containing these products is stored at refrigeration temperature and is not properly heated before consumption, as L. monocytogenes is psychrophilic. Amplified-fragment length polymorphism (AFLP) analysis is the method of genotypic techinique in which adaptor oligonucleotides are ligated to restriction enzyme fragments and then used as target sites for primers in a PCR amplification. The amplified fragments are electrophoretically separated to give strain-specific band profiles. Single-enzyme approach that did not require costly equipment or reagents for the fingerprinting of strains of Listeria monocytogenes was developed. Single-enzyme amplified fragment length polymorphism (SE-AFLP) analysis was used to perform species and strain identification of Salmonella, Shigella, Yersinia and E. coli. By careful selection of AFLP primers, it was possible to obtain reproducible and sensitive identification to strain level. The AFLP patterns of L. monocytogenes are divided by the kinds of specimens in which were isolated. SE-AFLP fragments can be analyzed using standard gel electrophoresis, and can be easily scored by visual inspection, due to the low complexity of the fingerprint obtained by this method. These features make SE-AFLP suitable for use in either field or laboratory applications.

  • PDF

POLYMERASE CHAIN REACTION AND RESTRICTION FRAGMENT LENGTH POLYMORPHISM OF 16S RIBOSOMAL DNA OF STREPTOCOCCI ISOLATED FROM INFECTED ROOT CANALS (감염 근관에서 분리된 연쇄구균의 16S Ribosomal DNA 중합효소 연쇄반응과 제한효소 절단길이 다형성에 관한 연구)

  • Jung, Hee-Il;Im, Mi-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.2
    • /
    • pp.577-609
    • /
    • 1995
  • Bacteria have been regarded as one of the most important factors in pulpal and periapical diseases. Streptococci are frequently isolated facultative anaerobes in infected root canals. Recently molecular biological techniques have been rapidly progressed. This study was designed to apply the molecular biological tools to the identification and classification of streptococci in the endodontic microbiology. Streptococci isolated from infected root canals were identified with both Vitek Systems and API 20 STREP. Identification results were somewhat different in several strains of streptococci. Eighteen streptococci and enterococcal was difficult so to digest plasmid DNA using Hind III and EcoRI to differentiate strains by restriction enzyme analysis of plasmid DNA. 16S rDNA of chromosome was amplified by polymerase chain reaction(PCR) and then restricition fragment length polymorphism(RFLP) using several restriction enzymes was observed. The molecular mass of 16S rDNA of chromosomal DNA was approximately 1.4kb. There were three to five RFLP patterns using eight restriction enzymes. RFLP patterns digested with CfoI which recognizes four base sequences were identical in all stains. Hind III which recognizes six base sequences could not digest the 16S rDNA. Restriction enzymes which recognize five base sequences were suitable for RFLP pattern analysis. At least three different restriction enzymes were needed to compare each strains. 16S rDNA PCR-RFLP was simple and rapid to differentiate and classify strains and could be used in the epidemiological study of root canal infections.

  • PDF

Genetic comparison between Spirometra erinacei and S. mansonoides using PCR-RFLP analysis (만손열두조충과 북미열두조충의 중합효소연쇄반응-마디길이여러꼴 분석법을 이용한 유전 형질 비교)

  • LEE, Soo-Ung;HUH, Sun;PHARES, C. Kirk
    • Parasites, Hosts and Diseases
    • /
    • v.35 no.4
    • /
    • pp.277-282
    • /
    • 1997
  • The only observed morphological difference between Spirometra erinqsei and S. mcnsonoides is the uterine shape of the mature proglottid. Two species of worms are thought to be evolutionarily closely related. Biomolecular colnparison of the ho worms by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis was conducted to observe the genetic distance. The 285 rDNA, mitochondrial cytochrome c oxidase subunit I (mCOI), and ribosomal internal transcribed spacer 1 (ITSI) fragments were obtained from the worms by PCR. The PCR products were cleaved by 5 four-base pair restriction enzyme combinations (Msp I, Hae III, Alu I, Cfo I, Rsa I) , electrophoresed and analyzed with PAUP 3.1.1. The fragment Patterns or 285 rDNA and Lni demonstrated that two worms were in identical systematic tree with bootstrap number 94 and 100, respectively As for mCOI, bootstrap number was 74 in a different tree. Above results are indicative of recent common ancestry between S. etinocei and S. mansonoides.

  • PDF

Restriction Fragment Length Polymorphisms of Genomic DNA in Strains of Xanthomonas campestris pv. vesicatoria (지리적 기원이 다른 고추 더뎅이병균 균주 Genomic DNA의 RFLP 분석)

  • 정희정
    • Korean Journal Plant Pathology
    • /
    • v.12 no.2
    • /
    • pp.162-168
    • /
    • 1996
  • 우리 나라의 주요 고추 재배지와 미국, 대만, 호주, 아르헨티나에서 수집된 44 개 고추 더뎅이병균(Xanthomonas campestris pv. vesicatoria)균주간의 유전적변이를 genomic DNA의 restriction fragment length polymorphism(RFLP)에 의해 분석하였다. Genomic DNA RFLP profiles을 cluster 분석하여 얻은 dendrogram에서 지리적 기원이 다른 44개 균주들은 11개 RFLP 그룹으로 분류되었다. 외국 균주들은 genomic DNA의 RFLP 분석에 의해 모두 각각 다른 RFLP 그룹으로 분류되었다. 외국 균주들 중에서 미국 균주는 우리 나라 일부 균주들과 밀접한 유전적 관련성을 가지고 함께 cluster를 이루었는데, 이것은 이 균주들이 동일한 고추 더뎅이병균의 조상 균주 집단에서 유래했으리라는 것을 시사해 준다. 우리 나라 균주들은 6개의 RFLP 그룹으로 분류되었다. 대부분의 우리 나라 균주들은 가까운 cluster를 이루며 미국 균주를 제외한 외국 균주들과 뚜렷하게 구분되었다. 그러나 우리 나라 균주들 중에서 마산에서 수집된 Ms93-1은 다른 우리 나라 균주들과 뚜렷하게 구분되었다. 유전적으로 격리된 균주의 출현은 우리 나라에서 지리적 기원이 다른 고추 더뎅이병균 균주 사이에 이미 발생한 다양한 유전적 분화의 결과라고 추론된다.

  • PDF

Identification of Mycobacteria by Comparative Sequence Apalysis and PCR-Restriction Fragment Length Polymorphism Analysis (염기서열과 PCR-Restriction Fragment Length Polymorphism 분석에 의한 Mycobacteria 동정)

  • Kook, Yoon-Hoh
    • The Journal of the Korean Society for Microbiology
    • /
    • v.34 no.6
    • /
    • pp.561-571
    • /
    • 1999
  • Diagnosis of mycobacterial infection is dependent upon the isolation and identification of causative agents. The procedures involved are time consuming and technically demanding. To improve the laborious identification process mycobacterial systematics supported by gene analysis is feasible, being particularly useful for slowly growing or uncultivable mycobacteria. To complement genetic analysis for the differentiation and identification of mycobacterial species, an alternative marker gene, rpoB encoding the ${\beta}$ subunit of RNA polymerase, was investigated. rpoB DNAs (342 bp) were amplified from 52 reference strains of mycobacteria including Mycobacterium tuberculosis H37Rv (ATCC 27294) and clinical isolates by the PCR. The nucleotide sequences were directly determined (306 bp) and aligned using the multiple alignment algorithm in the MegAlign package (DNASTAR) and MEGA program. A phylogenetic tree was constructed with a neighborhood joining method. Comparative sequence analysis of rpoB DNA provided the basis for species differentiation. By being grouped into species-specific clusters with low sequence divergence among strains belonging to same species, all the clinical isolates could be easily identified. Furthermore RFLP analysis enabled rapid identification of clinical isolates.

  • PDF

Population Analysis of Korean and Japanese Toxic Alexandrium catenella Using PCR Targeting the Area Downstream of the Chloroplast PsbA Gene

  • Kim Choong-Jae;Kim Chang-Hoon;Sako Yoshihiko
    • Fisheries and Aquatic Sciences
    • /
    • v.7 no.3
    • /
    • pp.130-135
    • /
    • 2004
  • The marine dinoflagellate genus Alexandrium, which produces PSP toxins, has a global distribution. As human-assisted dispersal of the species has been suggested, it is important to develop molecular tools to trace the dispersal pathway. To screen population-specific DNA sequences that differentiate Korean and Japanese A. catenella, we targeted the area downstream of the chloroplast psbA gene using PCR with population-specific DNA primers followed by RFLP (restriction fragment length polymorphism) analysis and sequencing. The RFLP patterns of the PCR products divided Korean and Japanese A. catenella regional isolates into three types: Korean, Japanese, and type CMC3, isolated from Korea. We sequenced the PCR products, but found no similar gene in a homology search. The molecular phylogeny inferred from the sequences separated the Korean and Japanese A. catenella strains, as did the RFLP patterns. However, the Japanese isolates included two slightly different sequences (types J and K), while the Korean sequence was the same as the Japanese K type. In addition, a unique sequence was found in the Korean strains CMC2 and CMC3. Population-specific PCR amplification with Japanese A. catenella type-specific PCR primers designed from the type J sequence yielded PCR products for Japanese strains only, showing that the unknown gene can be used for a population analysis of Korean and Japanese A. catenella.