• Title/Summary/Keyword: restoration scenarios

Search Result 63, Processing Time 0.021 seconds

Projecting the Potential Distribution of Abies koreana in Korea Under the Climate Change Based on RCP Scenarios (RCP 기후변화 시나리오에 따른 우리나라 구상나무 잠재 분포 변화 예측)

  • Koo, Kyung Ah;Kim, Jaeuk;Kong, Woo-seok;Jung, Huicheul;Kim, Geunhan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.6
    • /
    • pp.19-30
    • /
    • 2016
  • The projection of climate-related range shift is critical information for conservation planning of Korean fir (Abies koreana E. H. Wilson). We first modeled the distribution of Korean fir under current climate condition using five single-model species distribution models (SDMs) and the pre-evaluation weighted ensemble method and then predicted the distributions under future climate conditions projected with HadGEM2-AO under four $CO_2$ emission scenarios, the Representative Concentration Pathways (RCP) 2.6, 4.5, 6.0 and 8.5. We also investigated the predictive uncertainty stemming from five individual algorithms and four $CO_2$ emission scenarios for better interpretation of SDM projections. Five individual algorithms were Generalized linear model (GLM), Generalized additive model (GAM), Multivariate adaptive regression splines (MARS), Generalized boosted model (GBM) and Random forest (RF). The results showed high variations of model performances among individual SDMs and the wide range of diverging predictions of future distributions of Korean fir in response to RCPs. The ensemble model presented the highest predictive accuracy (TSS = 0.97, AUC = 0.99) and predicted that the climate habitat suitability of Korean fir would increase under climate changes. Accordingly, the fir distribution could expand under future climate conditions. Increasing precipitation may account for increases in the distribution of Korean fir. Increasing precipitation compensates the negative effects of increasing temperature. However, the future distribution of Korean fir is also affected by other ecological processes, such as interactions with co-existing species, adaptation and dispersal limitation, and other environmental factors, such as extreme weather events and land-use changes. Therefore, we need further ecological research and to develop mechanistic and process-based distribution models for improving the predictive accuracy.

Climate Change Impact Assessment of Abies nephrolepis (Trautv.) Maxim. in Subalpine Ecosystem using Ensemble Habitat Suitability Modeling (서식처 적합모형을 적용한 고산지역 분비나무의 기후변화 영향평가)

  • Choi, Jae-Yong;Lee, Sang-Hyuk
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.1
    • /
    • pp.103-118
    • /
    • 2018
  • Ecosystems in subalpine regions are recognized as areas vulnerable to climatic changes because rainfall and the possibility of flora migration are very low due to the characteristics of topography in the regions. In this context, habitat niche was formulated for representative species of arbors in subalpine regions in order to understand the effects of climatic changes on alpine arbor ecosystems. The current potential habitats were modeled as future change areas according to the climatic change scenarios. Based on the growth conditions and environmental characteristics of the habitats, the study was conducted to identify direct and indirect causes affecting the habitat reduction of Abies nephrolepis. Diverse model algorithms for explanation of the relationship between the emergence of biological species and habitat environments were reviewed to construct the environmental data suitable for the six models(GLM, GAM, RF, MaxEnt, ANN, and SVM). Weights determined through TSS were applied to the six models for ensemble in an attempt to minimize the uncertainty of the models. Based on the current climate determined by averaging the climates over the past 30years(1981~2010) and the HadGEM-RA model was applied to fabricate bioclimatic variables for scenarios RCP 4.5 and 8.5 on the near and far future. The results of models of the alpine region tree species studied were put together and evaluated and the results indicated that a total of eight national parks such as Mt. Seorak, Odaesan, and Hallasan would be mainly affected by climatic changes. Changes in the Baekdudaegan reserves were analyzed and in the results, A. nephrolepis was predicted to be affected the most in the RCP8.5. The results of analysis as such are expected to be finally utilizable in the survey of biological species in the Korean peninsula, restoration and conservation strategies considering climatic changes as the analysis identified the degrees of impacts of climatic changes on subalpine region trees in Korean peninsula with very high conservation values.

Determination of a priority for leakage restoration considering the scale of damage in for water distribution systems (피해규모를 고려한 용수공급시스템 누수복구 우선순위 선정)

  • Kim, Ryul;Kwon, Hui Geun;Choi, Young Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.10
    • /
    • pp.679-690
    • /
    • 2023
  • Leakage is one of the representative abnormal conditions in Water distribution systems (WDSs). Leakage can potentially occur and cause immediate economic and hydraulic damage upon occurrence. Therefore, leakage detection is essential, but WDSs are located underground, it is difficult. Moreover, when multiple leakage occurs, it is required to prioritize restoration according to the scale and location of the leakage, applying for an optimal restoration framework can be advantageous in terms of system resilience. In this study, various leakage scenarios were generated based on the WDSs hydraulic model, and leakage detection was carried out containing location and scale using a Deep learning-based model. Finally, the leakage location and scale obtained from the detection results were used as a factor for the priority of leakage restoration, and the results of the priority of leakage restoration were derived. The priority of leakage restoration considered not only hydraulic factors but also socio-economic factors (e.g., leakage scale, important facilities).

Analysis of Korean TMLD Design Flow Variation due to Large Dam Effluents and Water Use Scenarios

  • Shin, Hyun-Suk;Kang, Doo-Kee;Kim, Sang-Dan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.74-83
    • /
    • 2007
  • The goal of this study is to establish an integrated watershed hydrologic model for the whole Nakdong River basin whose area is an approximately 24,000 km2. Including a number of watershed elements such as rainfall, runoff, water use, and so on, the proposed model is based on SWAT model, and is used to improve the flow duration curve estimation of ungauged watersheds for Korean Total Maximum Daily Load (TMDL). The model is also used to recognize quantitatively the river flow variation due to water use elements and large dam effluents in the whole watershed. The established combined watershed hydrologic model, SWAT-Nakdong, is used to evaluate the quantified influences of artificial water balance elements, such as a dam and water use in the watershed. We apply two water balance scenarios in this study: the dam scenario considering effluent conditions of 4 large multi-purpose dams, Andong dam, Imha dam, Namgang dam, and Habcheon dam, and the water use scenario considering a water use for stream line and the effluent from a treatment plant. The two scenarios are used to investigate the impacts on TMDL design flow and flow duration of particular locations in Nakdong River main stream. The results from this study will provide the basic guideline for the natural flow restoration in Nakdong River.

  • PDF

Issues and Trends concerning of Ecological Landscape Planning and Design with ESSD (지속 가능한 개발 및 생태조경분야의 연구경향과 과제)

  • 이명우
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.32 no.1
    • /
    • pp.139-156
    • /
    • 2004
  • All Papers on Ecological Landscape Degign in KILA from 1973 to 2003 are listed herein for finding research issues and trends. The emerging field of Ecological studies of landscape design is based on Landscape Ecology and Watershed Ecology, the Principles of which can be applied to surveying and evaluation, Planning and design, construction and management focusing preservation of wildlife habitat and niche. This field can be classified into six categories: 1. Sustainable site planning and index, 2. Ecological planning process and regulation, 3. landscape ecology and biotope map, 4. Watershed and eco corridor project, 5. Urban forestry and environment, and 6. artificial ground and restoration ecology. The following is the summary of the findings from Paper review: 1. Sustainable index shall be studied about more specified sites. Water recycling facilities, and reservation wet land need to be studied. 2. Policy and legislation research on Ecological design shall be researched by expanding of the application field. Nature park planning and management fields shall be considered as the main theme of green networking Parts. 3. Landscape Ecological studies should be connected to practical surveying data, e.g. the eco-maps published by Environment Ministry. Traditional culture and science should be joined with the modem science. 4. Eco-corridor planning will go with the scenarios and theories of watershed ecology. 5. Urban forestry shall be studied with the wildlife's behavior and habitat. 6. Restoration engineering techniques should be reconsidered with the wildlife's existence and environmental affiliation.

Analysis of Ecohydrologic Characteristics based on Development of Riparian Zone (수변 식생대 조성에 따른 생태수문학적 특성 분석)

  • Kim, Nam Won;Kim, Jitae;Chung, Il Moon;Lee, Jeongwoo
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.910-915
    • /
    • 2009
  • The ecohydrologic characteristics according to planting in riparian zone for the riparian restoration are analyzed in this research. The ecohydrologic components due to land use change in riparian zone from existing land cover to planted area such as pasture and wildrye are simulated in the test basin with the integrated SWAT-MODFLOW model. After analysis of change of the hydrologic properties such as surface flow, lateral flow, transpiration and soil water in riparian zone, it is revealed that soil water is one of the key factors and planting of wildrye can increase soil water in riparian zone. The simulation performance of the SWAT-MODFLOW model is validated in this study and it is expected that this model can be used to evaluate various riparian restoration scenarios.

Management of large class II lesions in molars: how to restore and when to perform surgical crown lengthening?

  • Dablanca-Blanco, Ana Belen;Blanco-Carrion, Juan;Martin-Biedma, Benjamin;Varela-Patino, Purificacion;Bello-Castro, Alba;Castelo-Baz, Pablo
    • Restorative Dentistry and Endodontics
    • /
    • v.42 no.3
    • /
    • pp.240-252
    • /
    • 2017
  • The restoration of endodontic tooth is always a challenge for the clinician, not only due to excessive loss of tooth structure but also invasion of the biological width due to large decayed lesions. In this paper, the 7 most common clinical scenarios in molars with class II lesions ever deeper were examined. This includes both the type of restoration (direct or indirect) and the management of the cavity margin, such as the need for deep margin elevation (DME) or crown lengthening. It is necessary to have the DME when the healthy tooth remnant is in the sulcus or at the epithelium level. For caries that reaches the connective tissue or the bone crest, crown lengthening is required. Endocrowns are a good treatment option in the endodontically treated tooth when the loss of structure is advanced.

Effects of river space restoration on biodiversity in the Mankyung river (만경강 하천공간 복원이 생물다양성에 미치는 영향)

  • Jeon, Ho-Seong;Kim, Kyuho;Hong, Il;Kim, Ji-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.spc2
    • /
    • pp.865-873
    • /
    • 2019
  • The purpose of this study is to develop and apply a river space restoration framework considering various functions of river basin system. In particular, we will present sustainable river basin management directions by quantifying the effect of improving the aquatic ecosystem through the restoration of river space. For this purpose, the present problems are derived from functional aspects of the river basin, and the river area restoration framework linked with the individual outcome indicators is constructed to evaluate the restoration effect by each function. The ecological impact of restoration of river area was quantitatively analyzed by introducing ecotope concept. As a result of the comparison of restoration effects by creating three kinds of river area restoration scenarios, the construction of suitable habitat such as backswamp in the expanded area has shown favorable results in expanding biodiversity. The diversity evaluation of ecotope in conjunction with the hydraulic and hydrological characteristics of the year will not only provide the expected effects of restoration of river space but will also serve as a criterion about post-project monitoring for outcome evaluation.

A Study for the Computer Simulation on the Flood Prevention Function of the Extensive Green Roof in Connection with RCP 8.5 Scenarios (RCP 8.5 시나리오와 연동한 저관리형 옥상녹화시스템의 수해방재 성능에 대한 전산모의 연구)

  • Kim, Tae Han;Park, Sang Yeon;Park, Eun Hee;Jang, Seung Wan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.3
    • /
    • pp.1-11
    • /
    • 2014
  • Recently, major cities in Korea are suffering from frequent urban flooding caused by heavy rainfall. Such urban flooding mainly occurs due to the limited design capacity of the current drainage network, which increases the vulnerability of the cities to cope with intense precipitation events brought about by climate change. In other words, it can be interpreted that runoff exceeding the design capacity of the drainage network and increased impervious surfaces in the urban cities can overburden the current drainage system and cause floods. The study presents the green roof as a sustainable solution for this issue, and suggests the pre-design using the LID controls model in SWMM to establish more specific flood prevention system. In order to conduct the computer simulation in connection with Korean climate, the study used the measured precipitation data from Cheonan Station of Korea Meteorological Administration (KMA) and the forecasted precipitation data from RCP 8.5 scenario. As a result, Extensive Green Roof System reduced the peak runoff by 53.5% with the past storm events and by 54.9% with the future storm events. The runoff efficiency was decreased to 4% and 7%. This results can be understood that Extensive Green Roof System works effectively in reducing the peak runoff instead of reducing the total stormwater runoff.

Carbon neutrality potentials in local governments under different forest management - The Study Case of Paju and Goseong - (산림관리에 따른 기초지자체 규모의 탄소중립 가능성 평가 - 파주시와 고성군을 대상으로 -)

  • Lee, Do-Hyung;Choe, Hye-Yeong;Kim, Joo-Young;Cheong, Yu-Kyong;Kil, Sung-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.3
    • /
    • pp.17-28
    • /
    • 2022
  • We evaluated the effect of CO2 offsetting by estimating changes in carbon uptake under various forest management scenarios and proposed forest management strategies to achieve carbon neutrality. Paju and Goseong, which have relatively large forest areas but different industrial characteristics, were selected for the study sites. The current state of forest distribution was analyzed using forest type maps and aerial photographs, and the amount of carbon uptake was calculated using the equation presented by the IPCC Guidelines for National Greenhouse Gas Inventories and the national emission/absorption coefficients from the Korea National Greenhouse Gas Inventory Report. As of 2015, the forest carbon absorption in Paju and Goseong was 49,931 t/yr and 94,225 t/yr, respectively, and the annual carbon absorption per unit area was 2.28 t/ha/yr and 2.16 t/ha/yr. Under the forest management scenarios, the annual maximum carbon absorption per unit area is estimated to increase to 5.68 t/ha/yr in Paju and 4.22 t/ha/yr in Goseong, and this absorption would increase further if urban forests were additionally created. Even if the current forests of Paju and Goseong are maintained as they are, emissions from electricity use can be sufficiently offset. However, by applying appropriate forest management strategies, emissions from sectors other than electricity use could be offset. This study can be applied to the establishment of carbon absorption strategies in the forest sector to achieve carbon neutrality.