• Title/Summary/Keyword: restoration, wavelength division multiplexing

Search Result 9, Processing Time 0.024 seconds

Enhanced p-Cycles for WDM Optical Network with Limited Wavelength Converters (제한된 광 파장변환 기능을 가지는 WDM망을 고려한 개선된 p-Cycle 기법)

  • Shin, Sang-Heon;Shin, Hae-Joon;Kim, Young-Tak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.3B
    • /
    • pp.200-208
    • /
    • 2003
  • In this paper, we propose an enhanced p-cycles (preconfigured protection cycles) scheme for fast restoration in WDM (Wavelength Division Multiplexing) optical mesh network with limited wavelength conversion for fast restoration. We enhanced the p-cycles to accommodate uni-directional connections to be used in uni-directional multicasting or asymmetric broadband multimedia communications with bi-directional connectivity. We applied it to WDM network with limited wavelength conversion and analyzed the result. The analysis results show that the enhanced p-cycle algorithm provides better performance in WDM optical networks with limited wavelength converter.

Shared Protection of Lightpath with Guaranteed Switching Time over DWDM Networks

  • Chen Yen-Wen;Peng I-Hsuan
    • Journal of Communications and Networks
    • /
    • v.8 no.2
    • /
    • pp.228-233
    • /
    • 2006
  • Survivability is a very important requirement for the deployment of broadband networks because out of service links can affect volumes of traffic even if it is a very short time. And the data paths of broadband networks, which are critical for traffic engineering, are always necessary to be well protected. The procedure of protection or restoration for a path is initiated when failure is detected within the working path. In order to minimize the influence on transmission quality caused by the failure of links and to provide a definite time for the recovery from the failure, the protection switching time (PST) should be carefully considered in the path arrangement. Several researches have been devoted to construct the protection and restoration schemes of data paths over dense wavelength division multiplexing (DWDM) networks, however, there was rare research on the design of data paths with guaranteed protection switching time. In this paper, the PST-guaranteed scheme, which is based on the concept of short leap shared protection (SLSP), for the arrangement of data paths in DWDM networks is proposed. The proposed scheme provides an efficient procedure to determine a just-enough PST-guaranteed backup paths for a working path. In addition to selecting the PST-guaranteed path, the network cost is also considered in a heuristic manner. The experimental results demonstrate that the paths arranged by the proposed scheme can fully meet the desired PST and the required cost of the selected path is competitive with which of the shared path scheme.

Variable Aggregation in the ILP Design of WDM Networks with Dedicated Protection

  • Tornatore, Massimo;Maier, Guido;Pattavina, Achille
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.419-427
    • /
    • 2007
  • In wavelength-division-multiplexing(WDM) networks a link failure may cause the failure of several high-bit-rate optical channels, thereby leading to large data loss. Recently, various protection and restoration mechanisms have been proposed to efficiently deal with this problem in mesh networks. Among them, dedicated path protection(DPP) is a promising candidate because of its ultra-fast restoration time and robustness. In this work we investigate the issue of planning and optimization of WDM networks with DPP. Integer linear programming(ILP), in particular, is one of the most common exact method to solve the design optimization problem for protected WDM networks. Traditional ILP formalizations to solve this problem rely on the classical flow or route formulation approaches, but both these approaches suffer from a excessively high computational burden. In this paper, we present a variable-aggregation method that has the ability of significantly reducing the complexity of the traditional flow formulation. We compare also the computational burden of flow formulation with variable aggregation both with the classical flow and route formulations. The comparison is carried out by applying the three alternative methods to the optimization of two case-study networks.

An Efficient Approach for Lightpath Restoration in WDM Networks

  • Kabir, S.M. Humayun;Pham, Van Su;Yoon, Gi-Wan
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.1
    • /
    • pp.15-18
    • /
    • 2008
  • WDM is an incredibly promising technique in which multiple channels are operated along a single fiber, providing the facilities of terabit per second bandwidth. Thus, the survivability of WDM networks becomes critical for the success of the next generation internet architecture. Despite the fact that the path-based proactive restoration scheme guarantees 100% restoration as it computes a backup light path while the primary light path is being set up, this method results in additional capacity consumption. In this paper, an ideal technique is proposed that modifies the active multi-backup paths method and results in a better restoration scheme. Based on a theoretical analysis, a new method is shown to reduce the number of hopes as well as the restoration time.

A Study on Design Scheme of Mesh-Based Survivable WDM Networks (메쉬 기반의 생존성 WDM망의 설계 기법에 관한 연구)

  • 현기호;정영철
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.7
    • /
    • pp.507-517
    • /
    • 2003
  • A single fiber failure in mesh-based WDM networks may result in the loss of a large number of data. To remedy this problem, an efficient restoration algorithm for a single fiber failure in the mesh- based WDM network is necessary. We propose a new algorithm for restoration scheme in WDM networks and compare it with previous schemes. Path restoration and link restoration are two representative restoration schemes which deal with only a single link failure. In this paper, we propose two kinds of efficient restoration scheme. In the proposed schemes the restoration path for each link failure is not secured. The mesh network is decomposed into a number of small loops. In one algorithm, any link failure in a certain loop is regarded as the failure of the loop and the restoration lightpath is selected by detouring the failed loop. In another scheme any link failure in a certain loop is restored within the loop. We compare performance of the proposed schemes with conventional path restoration scheme and link restoration scheme. Simulation results show that CPU time in the proposed schemes decreases compared with that in path restoration scheme and link restoration scheme, although total wavelength mileage usage increases by 10% to 50%.

RWA Algorithm for Differentiated Service in Next Generation Optical Internet Backbone Networks (차세대 광인터넷 백본망에서 차등화 서비스 제공을 위한 RWA 알고리즘)

  • 송현수;배정현;김성운;김영부;이현진;이재동
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.2
    • /
    • pp.196-206
    • /
    • 2004
  • In the Next Generation Internet(NGI) backbone network, a Dense Wavelength Division Multiplexing (DWDM) technology has been more and more highlighted to cover the increasing subscribers and bandwidth requirement. For such a DWDM network, Routine and Wavelength Assignment (RWA) is the essential problem to establish the optimal path and assign a wavelength efficiently to the selected path in resource utilization. However, the existing RWA algorithms do not consider the congestion in the network so that the performance of then is so limited. To solve this problem, in this paper, we introduce a new RWA algorithm, called Multi Wavelength-Minimum Interference path Routing (MW-MIPR) that establishes a routing path to minimize the interference for many potential future connection setup request. And then, we also propose a wavelength-routed QoS routing scheme based on differentiated QoS classes with applying MW-MIPR algorithm. Simulation results are also given to prove the efficiency of the proposed algorithms.

Fault/Attack Management Framework for Network Survivability in Next Generation Optical Internet Backbone (차세대 광 인터넷 백본망에서 망생존성을 위한 Fault/Attack Management 프레임워크)

  • 김성운;이준원
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.10
    • /
    • pp.67-78
    • /
    • 2003
  • As optical network technology advances and high bandwidth Internet is demanded for the exponential growth of internet traffic volumes, the Dense-Wavelength Division Multiplexing (DWDM) networks have been widely accepted as a promising approach to the Next Generation Optical Internet (NGOI) backbone networks for nation wide or global coverage. Important issues in the NGOI based on DWDM networks are the Routing and Wavelength Assignment(RWA) problem and survivability. Especially, fault/attack detection, localization and recovery schemes in All Optical Transport Network(AOTN) is one of the most important issues because a short service disruption in DWDM networks carrying extremely high data rates causes loss of vast traffic volumes. In this paper, we suggest a fault/attack management model for NGOI through analyzing fault/attack vulnerability of various optical backbone network devices and propose fault/attack recovery procedure considering Extended-LMP(Link Management Protocol) and RSVP-TE+(Resource Reservation Protocol-Traffic Engineering) as control protocols in IP/GMPLS over DWDM.

Fault-Management Scheme for Recovery Time and Resource Efficiency in OBS Networks (OBS 망에서 복구 시간과 자원의 효율성을 고려한 장애 복구 기법)

  • 이해정;정태근;소원호;김영천
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.9B
    • /
    • pp.793-805
    • /
    • 2003
  • In OBS (Optical Burst Switching) networks which decouple the burst from its header, the fault of a fiber link can lead to the failure of all the light-path that traverses the fiber. Because each light-path is expected to operate at a rate of a few Gbps by using WDM (Wavelength Division Multiplexing) technology, any failure may lead to large data loss. Therefore, an efficient recovery scheme must be provided. In this paper, we analyze network utilization and BCP (Burst Control Packet) loss rate according to each link failure by applying the conventional restoration schemes in OBS networks. And through these simulation results, an ASPR scheme is proposed improve the fault management scheme in terms of recovery time and throughput. Finally, We compare the performance of our proposed scheme with that of the conventional one with respect to burst loss rate, resource utilization and throughput by OPNET simulations.

Adaptation of p-Cycle considering QoS Constraints in WDM Networks (WDM 망에서 QoS 제약 조건을 고려한 p-Cycle 적용 방안)

  • Shin, Sang-Heon;Shin, Hae-Joon;Kim, Young-Tak
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.5
    • /
    • pp.668-675
    • /
    • 2003
  • In this paper, we propose an enhanced p-cycle (preconfigured protection cycle) scheme for WDM mesh networks with QoS constraints. In the previous researches on p-cycle, it is assumed that user's connection has a hi-directional connectivity and the same bandwidth on both direction. Therefore it is difficult to apply p-cycle based link protection to uni-directional connections for multicasting or asymmetric broadband multimedia communications with hi-directional connectivity. And it didn't consider QoS of backup path. We enhanced the p-cycles to accomodate uni-directional connections for multicasting or asymmetric bandwidth communications with hi-directional connectivity. And we propose a selection procedure of p-cycle to assure QoS of backup path. We were able to reduce a required backup bandwidth by applying a uni-directional p-cycle concept to asymmetric broadband multimedia communication environment. The proposed p-cycle selection procedure is applied to the U.S. sample network to evaluate whether the configured p-cycles can support QoS constraint of working path and backup path.