• Title/Summary/Keyword: response surface optimization

Search Result 1,447, Processing Time 0.033 seconds

Water Digital Twin for High-tech Electronics Industrial Wastewater Treatment System (II): e-ASM Calibration, Effluent Prediction, Process selection, and Design (첨단 전자산업 폐수처리시설의 Water Digital Twin(II): e-ASM 모델 보정, 수질 예측, 공정 선택과 설계)

  • Heo, SungKu;Jeong, Chanhyeok;Lee, Nahui;Shim, Yerim;Woo, TaeYong;Kim, JeongIn;Yoo, ChangKyoo
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.79-93
    • /
    • 2022
  • In this study, an electronics industrial wastewater activated sludge model (e-ASM) to be used as a Water Digital Twin was calibrated based on real high-tech electronics industrial wastewater treatment measurements from lab-scale and pilot-scale reactors, and examined for its treatment performance, effluent quality prediction, and optimal process selection. For specialized modeling of a high-tech electronics industrial wastewater treatment system, the kinetic parameters of the e-ASM were identified by a sensitivity analysis and calibrated by the multiple response surface method (MRS). The calibrated e-ASM showed a high compatibility of more than 90% with the experimental data from the lab-scale and pilot-scale processes. Four electronics industrial wastewater treatment processes-MLE, A2/O, 4-stage MLE-MBR, and Bardenpo-MBR-were implemented with the proposed Water Digital Twin to compare their removal efficiencies according to various electronics industrial wastewater characteristics. Bardenpo-MBR stably removed more than 90% of the chemical oxygen demand (COD) and showed the highest nitrogen removal efficiency. Furthermore, a high concentration of 1,800 mg L-1 T MAH influent could be 98% removed when the HRT of the Bardenpho-MBR process was more than 3 days. Hence, it is expected that the e-ASM in this study can be used as a Water Digital Twin platform with high compatibility in a variety of situations, including plant optimization, Water AI, and the selection of best available technology (BAT) for a sustainable high-tech electronics industry.

The Statistical Optimization of TCE Dechlorination by Geobacter lovleyi Using Box-Behnken Design (Box-Behnken법을 이용한 Geobacter lovleyi의 TCE 탈염소화 공정 최적화 연구)

  • Cha, Jaehun;An, Sangwoo;Chun, sukyoung;Park, Jaewoo;Chang, Soonwoong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.11
    • /
    • pp.37-42
    • /
    • 2012
  • This study investigated the use of Geobacter lovleyi with TBOS(Tetrabutoxysilane) for TCE(Trichloroethylene) dechlorination. The TCE dechlorination by Geobacter lovleiy was mathematically described as the independent variables such as initial concentration of TCE, protein mass of Geobacter lovleyi and initial concentration of TOBS, and these were modeled by the use of response surface methodology(RSM). These experiments were carried out as a Box-Behnken Design(BBD) consisting of 15 experiments. The application of RSM yielded the following equation, which is empirical relationship for the dechlorination efficiency($Y_1$, %) of TCE and first order kinetic constant of TCE($Y_2,\;d^{-1}$) by independent variables in coded unit : $Y_1=-11.50X_1$(initial concentration of TCE) + $4.25X_2$(protein mass as Geobacter lovleyi injected mass) - $4.75X_3$(initial concentration of TBOS) - ${6.58X_1}^2$ - ${8.58X_2}^2$ + 93.67, $Y_2=-10.92X_1+5.06X_2-4.89X_3-{4.93X_3}^2-2.19X_1X_2+2.54X_1X_3-2.19X_2X_3+16.71$. In this case, the value of the adjusted determination coefficient(adjusted $R^2$= 0.975 and 0.934) were closed to 1, showing a high significance of the model. Statistical results showed the order of TCE dechlorination at experimental factors to be initial TCE concentration > initial TBOS concentration > protein mass, but the interaction effects were non-significant.

Optimization of Blanching Process of Cirsium setidens and Influence of Blanching on Antioxidant Capacity (참취 데치기 최적 공정 확립과 추출물의 항산화 특성 변화)

  • Jo, Hyeon Seon;Ha, Yoo Jin;Kim, Yeon Tae;Kang, Gil Nam;Yoo, Sun Kyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.173-182
    • /
    • 2017
  • This study was conducted to investigate the change of Aaster scaber antioxidative activity, total phenolic compounds and flavonoids during the blanching processes. With two parameters such as blanching time and temperature, response surface methodology and central composite design was used to study the combined effect of blanching time (90 to 162 sec) and blanching temperature (75 to $99^{\circ}C$). We found that antioxidative activity, total phenolic compounds and flavonoids during the blanching processes were influenced by blanching temperature and time. Within process condition, total phenolic compounds and flavonoids were extracted 3.00 - 35.48 mg/g and 2.35 - 8.38 mg/g, respectively. DPPH radical scavenging activity was 42.10 - 67.14%. The change of total phenolic compounds, flavonoids, and DPPH radical scavenging activity was dependent of blanching temperature more than time. The total phenolic compounds was increased as temperature rise, but flavonoids not. However, DPPH radical scavenging activity was increased during the blanching process.

Optimization of Preparation Condition on Oriental Melon Jam by Response Surface Methodology (반응표면 분석에 의한 참외잼의 제조조건 최적화)

  • Lee Gee-Dong;Kim Suk-Kyung;Lee Myung-Hee
    • Food Science and Preservation
    • /
    • v.12 no.3
    • /
    • pp.216-222
    • /
    • 2005
  • This study was carried out to establish the preparation condition of muskmelon jam. A central composite design was applied to investigate effects of muskmelon paste content(40, 45, 50, 55, 60 g), fructose ratio of sugar(20, 35, 50, 65, $80\%$) and pectin addition(l, 2, 3, 4, 5 g). The maximum sugar content was 61.48 $^{\circ}$Brix in 41.04 g of muskmelon paste content, $48.10\%$ of fructose ratio of sugar and 2.12 g of pectin content. The maximum value of softness was 2.71 g in 45.06 g of muskmelon paste content, $79.46\%$ of fructose ratio of sugar and 2.71 g of pectin addition. The minimum value of jelly strength was $0.04\;g{\cdot}cm$ in 47.80 g of muskmelon paste content, $63.0\%$ of fructose ratio of sugar and 1.99 g of pectin addition. The maximum value of organoleptic overall palatability was 5.89 in 55.65 g of muskmelon paste content, $73.19\%$ of fructose ratio of sugar and 2.42 g of pectin addition. The optimum conditions predicted for each corresponding physicochemical and organoleptic properties of muskmelon jam were 55.2 g(muskmelon paste content), $76.3\%$(fructose ratio of sugar) and 2.5 g(pectin addition).

Optimization of Osmotic Dehydration Process for Manufacturing a Dried Sweet Pumpkin (건조단호박 제조를 위한 삼투건조공정의 최적화)

  • 나경민;홍주헌;차원섭;박준희;오상룡;조영제;이원영
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.2
    • /
    • pp.433-438
    • /
    • 2004
  • This study was conducted to develop a sweet pumpkin to intermediate materials for various processed foods and dried food having high quality. Factorial experiment design with three variables having three levels was adapted and response surface methodology was used to determine optimum conditions for osmotic dehydration of sweet pumpkin. The moisture content, weight reduction, moisture loss and solid gain after osmotic dehydration increased according to increasement of immersion temperature, concentration and time. The effect of concentration was more significant than that of temperature and time at given conditions. Sugar concentration and vitamin C content increased in accordance with increasement of immersion temperature, concentration and time during osmotic dehydration. Hardness was increased by increasing immersion time. The regression models showed very significant values and high correlation coefficients (R2) above 0.91, excepting hardness. The optimum condition for osmotic dehydration was 23$^{\circ}C$, 52$^{\circ}C$Brix and 80 min at the constricted conditions such as 60∼70% moisture content, above 3 mg/100 g vitamin C and more than 10 kg/$\textrm{cm}^2$ hardness.

Optimization of Lipase-Catalyzed Production of Structured Lipids from Canola Oil Containing Similar Composition of Triacylglycerols to Cocoa Butter (Canola Oil로부터 코코아버터와 유사한 Triacylglycerol 조성을 가진 재구성지질의 효소적 합성 최적화 연구)

  • Moon, Jun-Hee;Lee, Jeung-Hee;Shin, Jung-Ah;Hong, Soon-Taek;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.10
    • /
    • pp.1430-1437
    • /
    • 2011
  • Synthesis conditions of cocoa butter equivalents were optimized using the response surface method (RSM) by interesterification of canola oil (Ca), palmitic ethyl ester (PEE), and stearic ethyl ester (StEE). The reaction was catalyzed by immobilized lipase (Lipozyme TLIM) from Thermomyces lanuginosa to produce structured lipids containing a composition of triacylglycerols similar to cocoa butter. Reaction conditions were optimized using D-optimal design with the three reaction factors of the substrate molar ratio of canola oil to palmitic ethyl ester and stearic ethyl ester (Ca : PEE : StEE=1:1:3, 1:1.66:5, 1:2:6, 1:2.33:7, 1:3:9, $X_1$), enzyme ratio (2~6%, $X_2$), and reaction time (30~270 min, $X_3$). The optimal conditions that minimized acyl-migration while maximizing 1-palmitoyl-2-oleoyl-3-stearoyl glycerol (POS), 1,3-distearoyl-2-oleoyl glycerol (SOS), and 1,3-dipalmitoyl-2-oleoyl glycerol (POP) were predicted, resulting in Ca : PEE : StEE=1:3:9, 6% of enzyme ratio, and 40 min of reaction time. The reaction product of structured lipids was synthesized again under the same conditions, showing 10.43 area% of acyl-migration, 25.31 area% of POS/PSO, 19.79 area% of SOS, and 11.22 area% of POP.

Optimization of Microwave-assisted Extraction Conditions for Total Catechin and Electron Donating Ability of Grape Seed Extracts (포도씨 추출물의 총 카테킨 함량과 전자공여능에 대한 마이크로웨이브 추출조건 최적화)

  • Lee, Eun-Jin;Kim, Jeong-Sook;Kwon, Joong-Ho
    • Food Science and Preservation
    • /
    • v.15 no.6
    • /
    • pp.840-846
    • /
    • 2008
  • Microwave-assisted extraction (MAE) of grape seeds was performed under the different conditions based on a central composite design for independent variables of microwave power ($0{\sim}120\;W$), ethanol concentration ($0{\sim}100%$) and extraction time ($1{\sim}5\;min$). Response surface methodology (RSM) was used to predict the optimum extraction conditions for three dependent variables in grape seed extracts: total yield, total catechin and electron donating ability. Determination coefficients ($R^2$) of regression equations for the three dependent variables were higher than 0.9 (p < 0.01). The optimal MAE conditions to yield the maximum value of total catechin (434.16 mg%) were 122.76 W microwave power, 42.88% ethanol and 4.67 min extraction time. The superimposed contour maps for maximizing the three dependent variables indicated that the MAE condition ranges were 75150 W, 4060% ethanol and 3.55.0 min. The predicted values at the optimized conditions (6.72% total yield, 408.65 mg% total catechin, and 83.33% electron donation ability) were similar to the experimental values. The optimized MAE (112.5 W, 50% EtOH, 4.2 min) was more efficient than the conventional solvent extraction using 80% EtOH, $60^{\circ}C$ for 3h and 150 rpm.

Optimization for Pretreatment Condition according to Salt Concentration and Soaking Time in the Preparation of Perilla Jangachi (소금 농도와 삭힘 시간에 따른 깻잎 장아찌의 전처리 조건의 최적화)

  • Lee, Hye-Ran;Nam, Sang-Min;Lee, Jong-Mee
    • Journal of the Korean Society of Food Culture
    • /
    • v.17 no.1
    • /
    • pp.70-77
    • /
    • 2002
  • Jangachi(salted and fermented vegetable) has been made by Korean traditionally using several kinds of vegetables, which is a good source of variety of nutrients and vitamins. There are many methods for making Jangachi. Generally soy sauce Jangachi is made through two steps. First, as a pretreatment, vegetables are soaked in salt water. Second, soaked vegetables are fermented in various ingredients like soy sauce, sugar, garlic, ginger and so on. This study was performed to observe changes in contents of chemical components and sensory evaluation of pretreated perilla leaf. Perilla leaf was soaked in water with different levels of salt concentration(2, 5 and 8 %) and soaking time(1, 3 and 5 days). The optimal level of salt and soaking time was determined with the results of sensory evaluation by response surface methodology and analysis of composition. The moisture contents decreased as the levels of salt and soaking time increased. The moisture content of untreated sample was 87.5 % and when soaked for 5 days in the water of 8 % salt concentration, it became 78.27 %. pH of Perilla leaf was high in high levels of salt concentration and short soaking time. Total acidity was so opposite to pH that was low in high levels of salt concentration and short soaking time. In the water of 8 % salt concentration, total acidity was 0.14 % when soaked for 1 day, 0.20 % for 3 days and 0.30 % for 5 days. Salt contents became greater as the soaking time increased. As the results of puncture test, soaked Perilla leaf's toughness increased as the levels of salt increased and soaking time decreased. Among the sensory attributes, greenness increased as the levels of salt concentration increased when soaked for more than 3 days. Saltiness and bitterness became greater as the levels of salt concentration increased. Perilla flavor decreased with the short soaking time. Off-flavor increased with the increased levels of soaking time and decreased salt concentration when soaked for more than 3 days. Toughness decreased as the levels of soaking time increased. Crispness increased with the increased levels of salt concentration. The condition of pretreated Perilla was optimum when it soaked for 42 hours in 4 % salt concentration.

Fabrication of a Partial Genome Microarray of the Methylotrophic Yeast Hansenula polymorpha: Optimization and Evaluation of Transcript Profiling

  • OH , KWAN-SEOK;KWON, OH-SUK;OH, YUN-WI;SOHN, MIN-JEONG;JUNG, SOON-GEE;KIM, YONG-KYUNG;KIM, MIN-GON;RHEE, SANG-KI;GERD GELLISSEN,;KANG, HYUN-AH
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1239-1248
    • /
    • 2004
  • The methylotrophic yeast Hansenula polymorpha has been extensively studied as a model organism for methanol metabolism and peroxisome biogenesis. Recently, this yeast has also attracted attention as a promising host organism for recombinant protein production. Here, we describe the fabrication and evaluation of a DNA chip spotted with 382 open reading frames (ORFs) of H. polymorpha. Each ORF was PCR-amplified using gene-specific primer sets, of which the forward primers had 5'-aminolink. The PCR products were printed in duplicate onto the aldehyde-coated slide glasses to link only the coding strands to the surface of the slide via covalent coupling between amine and aldehyde groups. With the partial genome DNA chip, we compared efficiency of direct and indirect cDNA target labeling methods, and found that the indirect method, using fluorescent-labeled dendrimers, generated a higher hybridization signal-to-noise ratio than the direct method, using cDNA targets labeled by incorporation of fluorescence-labeled nucIeotides during reverse transcription. In addition, to assess the quality of this DNA chip, we analyzed the expression profiles of H. polymorpha cells grown on different carbon sources, such as glucose and methanol, and also those of cells treated with the superoxide­generating drug, menadione. The profiles obtained showed a high-level induction of a set of ORFs involved in methanol metabolism and oxidative stress response in the presence of methanol and menadione, respectively. The results demonstrate the sensitivity and reliability of our arrays to analyze global gene expression changes of H. polymorpha under defined environmental conditions.

Monitoring for optimum antioxidant extraction condition of Gugija (Lycium chinensis Mill) extract (구기자 추출물의 최적 항산화 추출조건 모니터링)

  • Kim, Hak-Yoon;Lee, Gee-Dong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.451-460
    • /
    • 2017
  • This study optimized the extraction of antioxidants from Gugija (Lycium chinensis Mill). To determine operational parameters, including ethanol concentration ($X_1$, 0~80%) and extraction time ($X_2$, 1~5 hr), response surface methodology was applied to monitor yield, anthocyanins, flavonoids and DPPH radical scavenging activity. Coefficients of determinations ($R^2$) of the models were range of 0.8645~0.9859 (p<0.01~0.1) in dependant parameters. Yield of Gugija extracts was maximized 23.12% in extraction conditions of 4.22 h at 8.25% ethanol. Anthocyanins was maximized 1.43 (OD in 530 nm) in extraction conditions of 3.06 h at 79.98% ethanol. Flavonoids was maximized $3,100{\mu}g/100g$ in extraction conditions of 3.37 h at 67.02% ethanol. DPPH radical scavenging activity was maximized 96.93% in extraction conditions of 1.67 h at 69.81% ethanol. Optimum extraction conditions (2.5 h extraction at 70% ethanol) were obtained by superimposing the contour maps with regard to anthocyanins, flavonoids and DPPH radical scavenging activity of Gugija. Maximum values of anthocyanins, flavonoids and DPPH radical scavenging activity in optimum extraction condition were 1.0080 (OD in 530 nm), $3,145{\mu}g/100g$, 96.96%, respectively. But values of anthocyanins, flavonoids and DPPH radical scavenging activity in water extraction condition (1 h at water) were 0.4652 (OD in 530 nm), $1,633{\mu}g/100g$, 86.98%, respectively.