• Title/Summary/Keyword: response surface optimization

Search Result 1,449, Processing Time 0.055 seconds

Optimization of the Extraction of Bioactive Compounds from Chaga Mushroom (Inonotus obliquus) by the Response Surface Methodology (반응표면분석법을 이용한 차가버섯(Inonotus obliquus)의 생리활성물질 최적 추출조건 탐색)

  • Kim, Jaecheol;Yi, Haechang;Lee, Kiuk;Hwang, Keum Taek;Yoo, Gichun
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.233-239
    • /
    • 2015
  • This study determined the optimum extraction conditions based on five response variables (yield, total phenolics, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radical scavanging activity, oxygen radical absorbance capacity (ORAC), and ${\beta}$-1,3-glucan content) in chaga mushroom (Inonotus obliquus) using the response surface methodology, where three independent variables (ethanol concentration, extraction temperature, and extraction time) were optimized using a central composite design. The optimum ethanol concentration, extraction temperature, and extraction time were 50% (w/w), $88.7^{\circ}C$, and 14.5 h; 9.2%, $92.7^{\circ}C$, and 14.5 h; 50.8%, $92.7^{\circ}C$, and 14.5 h; 9.2%, $92.7^{\circ}C$, and 1.5 h; and 90.8%, $92.7^{\circ}C$, and 1.5 h for yield, total phenolics, ABTS, ORAC, and ${\beta}$-1,3-glucan content, respectively. The predicted values of the response variables were compared with those of the extracts under the optimal extraction conditions to verify the models. The optimum extraction condition for the five response variables was predicted to be 81.4% ethanol at $92.7^{\circ}C$ for 14.5 h.

Characterization of Calcium Lactate Prepared from Butter Clam Saxidomus purpuratus Shell Powder (개조개(Saxidomus purpuratus) 패각분말로부터 젖산칼슘의 제조 및 특성)

  • Yoon, In Seong;Lee, Gyoon-Woo;Lee, Hyun Ji;Park, Sung Hwan;Park, Sun Young;Lee, Su Gwang;Kim, Jin-Soo;Heu, Min Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.3
    • /
    • pp.301-309
    • /
    • 2016
  • To facilitate the effective use of butter clam shell as a natural calcium resource, we determined the optimal conditions for calcium lactate (BCCL) preparation with high solubility using response surface methodology (RSM). The polynomial models developed by RSM for pH, solubility and yield were highly effective in describing the relationships between factors (P<0.05). Increased molar ratios of calcined powder (BCCP) from butter clam shell led to reduced solubility, yield, color values and overall quality. The critical values of multiple response optimization to independent variables were 1.75 M and 0.94 M for lactic acid and BCCP, respectively. The actual values (pH 7.23, 97.42% for solubility and 423.22% for yield) under optimization conditions were similar to the predicted values. White indices of BCCLs were in the range of 86.70–90.86. Therefore, organic acid treatment improved color value. The buffering capacity of BCCLs was strong, at pH 2.82 to 3.80, upon the addition of less than 2 mL of 1 N HCl. The calcium content and solubility of BCCLs were 6.2–16.7 g/100 g and 93.6-98.5%, respectively. Fourier transform analysis of infrared spectroscopy data identified BCCL as calcium lactate pentahydrate, and the analysis of microstructure by field emission scanning electron microscopy revealed an irregular form.

Optimization of Calcium Acetate Preparation from Littleneck Clam (Ruditapes philippinarum) Shell Powder and Its Properties (바지락(Ruditapes philippinarum) 패각분말로부터 초산칼슘 제조 및 특성)

  • Park, Sung Hwan;Jang, Soo Jeong;Lee, Hyun Ji;Lee, Gyoon-Woo;Lee, Jun Kyu;Kim, Yong Jung;Kim, Jin-Soo;Heu, Min Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.3
    • /
    • pp.321-327
    • /
    • 2015
  • The optimal condition for preparation of powdered calcium acetate (LCCA) which has high solubility, from calcined powder (LCCP) of the littleneck clam shell by response surface methodology (RSM) was examined. Increased molar ratio of LCCP led to reduced solubility, yield, color values, and overall quality. The critical values of multiple response optimization of independent variables were 2.57 M of acetic acid and 1.57 M of LCCP. The actual values (pH 7.0, 96.1% for solubility, and 220.9% for yield) under the optimized condition were similar to the predicted values. LCCA showed strong buffering capacity between pH 4.89 and 4.92 on addition of ~2 mL of 1 N HCl. The calcium content and solubility of LCCA were 21.9-23.0 g/100 g and 96.1-100.1%, respectively. The FT-IR and XRD patterns of LCCA were identified as calcium acetate monohydrate, and FESEM images revealed an irregular and rod-like microstructure.

Optimization for Electron Donating Ability and Organoleptic Properties of Ethanol Extracts from Chrysanthemum Petals (전자공여작용과 관능적 특성을 고려한 산국(山菊) 에탄올 추출물의 제조조건 최적화)

  • Park, Nan-Young;Lee, Gee-Dong;Jeong, Yong-Jin;Kim, Hyun-Ku;Kwon, Joong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.523-528
    • /
    • 1998
  • Response surface methodology (RSM) was used to monitor extraction characteristics of electron donating ability and organoleptic properties for ethanol extracts from Chrysanthemum petals, thereby determining optimum extraction conditions. A central composite design was applied to investigate effects of solvent per sample $(X_1)$, ethanol concentration $(X_2)$ and extraction time $(X_3)\;at\;60^{\circ}C$ on dependent variables such as electron donating ability $(Y_1)$, organoleptic color $(Y_2)$ and organoleptic aroma $(Y_3)$ of the extracts. Second-order models were employed to generate 4-dimensional response surfaces for qualitative and quantitative aspects of ethanol extracts. Coefficients of determination $(R_2)$ of the models for dependent variables were ranged from 0.8180 to 0.9696. Optimum extraction conditions for each variable were 50 mL/g, 61% and 16 hrs in electron donating ability, 88 mL/g, 21% and 16 hrs in organoleptic color, 55 mL/g, 73% and 19 hrs in organoleptic aroma, respectively. The optimum condition ranges for maximized characteristics of ethanol extracts were $65{\sim}78\;mL/g,\;90{\sim}100%\;and\;15{\sim}25\;hrs$. Predicted values at the optimum conditions were in good agreement with experimental values.

  • PDF

Inhibitory Effect on Angiotensin-converting Enzyme (ACE) and Optimization for Production of Ovotransferrin Hydrolysates (Ovotransferrin 가수분해물의 Angiotensin-converting Enzyme 활성억제 효과 및 생산 최적화)

  • Lee, Na-Kyoung;Ahn, Dong-Uk;Park, Keun-Kyu;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.30 no.2
    • /
    • pp.286-290
    • /
    • 2010
  • Angiotensin-converting enzyme (ACE) inhibitory activity and production optimization of ovotransferrin hydrolysates were studied. Ovotransferrin was hydrolyzed by several enzymes (protamex, alcalase, trypsin, pepsin, neutrase, and flavorzyme) and acid (0.03 N HCl). Ovotransferrin hydrolysate reduced ACE activity by 60.2%, 55.8%, and 42.6% when treated with trypsin, acid, and pepsin, respectively. Trypsin was selected for production of peptide having maximum AC inhibitory effect, which was greatest with 7 h hydrolysis. Central composite design determined that optimum composition of ACE inhibitory substances using substrate concentration of 20-35%, temperature of $35-55^{\circ}C$, and pH of 6.0-8.0. The optimum composition was 1% trypsin, substrate concentration of 26.32%, $51.29^{\circ}C$, and pH 6.32. Under this conditions, a maximum ACE inhibitory effect of 69.1% was evident, similar to the predicted value.

Identification of Thermal Flow Boundary Conditions for Three-way Catalytic Converter Using Optimization Techniques (최적화 기법을 이용한 삼원촉매변환기의 열유동 경계조건의 동정)

  • Baek, Seok-Heum;Choi, Hyun-Jin;Kim, Kwang-Hong;Cho, Seok-Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3125-3134
    • /
    • 2010
  • Three-way catalyst durability in the Korea requires 5 years/80,000km in 1988 but require 10 years/120,000km after 2002. Domestic three-way catalyst satisfies exhaust gas conversion efficiency or pressure drop etc. but don't satisfy thermal durability. Three-way catalyst maintains high temperature in interior domain but maintain low temperature on outside surface. This study evaluated thermal durability of three-way catalyst by thermal flow and structure analysis and the procedure is as followings. Thermal flow parameters ranges were determined by vehicle test and basic thermal flow analysis. Response surface for rear catalyst temperature was constructed using the design of experiment (DOE) for thermal flow parameters. Thermal flow parameters for rear catalyst temperature in vehicles examination were predicted by desirability function. Temperature distribution of three-way catalyst was estimated by thermal flow analysis for predicted thermal flow parameters.

Optimization for Solid Culture of Phellinus sp. by Response Surface Methodology (반응표면방법에 의한 Phellinus sp. 고체배양의 최적화)

  • Kang, Tae-Su;Kang, An-Seok;Sohn, Hyung-Rac;Kang, Mi-Sun;Lim, Yaung-Iee;Lee, Shin-Young;Jung, Sung-Mo
    • The Korean Journal of Mycology
    • /
    • v.26 no.2 s.85
    • /
    • pp.265-274
    • /
    • 1998
  • This study was carried out to obtain the basic data for an artificial cultivation of Phellinus sp.. The optimum conditions for the mycelial growth on the different sawdusts (Quercus aliena, Morns alba and Alnus japonica) substrate of an isolated Phellinus sp. were optimized by response surface methodology. The ratio of rice bran addition to sawdust and the suitable moisture content for the mycelial growth in the all sawdust media were about 30% (w/w) and $65{\sim}70%$ (w/v), respectively. The initial pHs for the mycelial growth of Quercus aliena and Morns alba were in the range of $pH\;5{\sim}6$, whereas Alnus japonica was obtained at pH 6. The optimum temperature for the mycelial growth was about $25{\sim}30^{\circ}C$, depending on the different kinds of wood substrates. From the response surface analysis, the values of independent variables of Quercus aliena at stationary points were determined to be 31.01 % (w/w) of rice bran, pH of 5.31 and 69.03% (w/v) of moisture content, and the expected value of mycelial growth was about 8.32 cm. Both the ratio of rice bran addition to sawdust $(X_1)$ and moisture content $(X_3)$ were effective to the mycelial growth. In the case of Morns alba, the ratio of rice bran addition to sawdust, initial pH and moisture content at the stationary points were 28.77% (w/w), 5.28 and 69.8 (w/v),respectively, and the expected mycelial growth of 7.60 cm was obtained. Stationary points for the mycelial growth in the sawdust media of Alnus japonica were 28.74% (w/w) of rice bran, pH of 6. 04 and 66.96% (w/v) of moisture content, and the expected values of mycelial growth was about 5.38 cm. Based on the above results, there was correlations between the mycelial growth and independent variables, and the effect of rice bran $(X_1)$ and initial pH $(X_2)$ for the mycelial growth were higher than the moisture content $(X_3)$. The optimum species of sawdust media for the my celial growth of Phellinus sp. was in the order of Quercus aliena > Morns alba > Alnus japonica.

  • PDF

Establishment of hot water extraction conditions for optimization of fermented Smilax china L. using response surface methodology (반응표면분석에 의한 발효 청미래덩굴(Smilax china L.) 잎 열수 추출조건의 최적화)

  • Kim, Jae-Won;Lee, Sang-Il;Lee, Ye-Kyung;Yang, Seung Hwan;Kim, Soon-Dong;Suh, Joo-Won
    • Food Science and Preservation
    • /
    • v.20 no.5
    • /
    • pp.668-683
    • /
    • 2013
  • In this study, we investigated the contents of total polyphenol (TP), total flavonoid, and absorbance at 475 nm ($OD_{475}$) which may produced in solid-fermented leaf of Smilax china L. by Aspergillus oryzae as a new functional components with reddish brown color, contents of water soluble substance (WSS), electron donating ability (EDA), Hunter $L^*$, $a^*$, $b^*$ values, sensory overall acceptability (OA) and also, the inhibitory activities (XOI and AOI) against partial purified xanthine oxidase (XO) and aldehyde oxidase (AO) from rabbit liver which were well known to relate the gout, and alcoholic liver disease, respectively in order to optimize water extraction using response surface methodology (RSM). All the $R^2$ values of the second-order polymonials ranged from 0.85 to 0.98, except for the EDA (0.69) and the XOI (0.78). However, the activities of the EDA and XOI were relatively high in the lower concentration of the fermented Smilax china L. leaf. The effects on the water extraction were highest in the concentration, among the dependent variables, and showed significant differences at the 1% level in the TP, TF and WSS contents and the $a^*$, $b^*$ and $OD_{475}$ values, but the OA showed significant differences at the 5% level. The optimal values of AOI, which was the most important functionality in the Smilax china L. that was predicted via RSM, were 59.48% at the 2.19% concentration, a $90.02^{\circ}C$ extraction temperature and a 4.03 minute extraction time ($R^2$: 0.93, p<0.007). The ranges of all the dependent variables of the optimal water extraction were 1.6~1.8% for the concentration, $83{\sim}93^{\circ}C$ for the temperature and 3.4~4.4 minutes for the extraction time; and the optimal water extraction conditions were a 1.7% concentration, an $88^{\circ}C$ extraction temperature and a 3.9-min extraction time.

Optimization of microwave-assisted extraction process for blue honeysuckle (Lonicera coerulea L.) using response surface methodology (반응표면분석법을 이용한 댕댕이 기능성성분의 마이크로웨이브추출조건 최적화)

  • Park, Daehee;Lee, Jae-Jun;Park, Jongjin;Park, Sanghwan;Lee, Wonyoung
    • Food Science and Preservation
    • /
    • v.24 no.5
    • /
    • pp.623-630
    • /
    • 2017
  • Functional compounds including flavonoids, anthocyanins, polyphneols and antioxidants were extracted from blue honeysuckle (Lonicera caerulea L.) using highly efficient microwave-assisted extraction. And extraction process was modeled and optimized according to response surface methodology (RSM). The independent variables ($X_n$) were ethanol concentration ($X_1$: 0, 25, 50, 75, 100%), irradiation time ($X_2$: 1, 3, 5, 7, 9 min), and microwave power ($X_3$: 60, 120, 180, 240, 300 W). Dependent variables ($Y_n$) were total flavonoid contents ($Y_1$), total anthocyanin contents ($Y_2$), total polyphenol contents ($Y_3$) and antioxidant activity ($Y_4$). Four-dimensional response surface plots were generated based on the fitted second-order polynomial models to get optimal conditions. Estimated optimal conditions for 4 responses were ethanol concentration of 54-72%, irradiation time of 7.1-7.6 min, and microwave power of 243-251 W. Ridge analysis predicted the maximal responses of total flavonoid content, total anthocyanin content, total polyphenol content and antioxidant activity were 38.00 mg RE/g, 6.80 mg CGE/g, 14.90 mg GAE/g, 89.10%, respectively. Verification experiment was carried out at predicted optimal conditions and experimental values for total flavonoid content, total anthocyanin content, total polyphenol content and antioxidant activity were 38.10 mg RE/g, 6.72 mg CGE/g, 14.91 mg GAE/g and 89.13%, respectively. No significant difference was observed between predicted and experimental values, indicating good fitness of fitted model and successful application of RSM.

Emulsification and Stability of Wheat Germ Oil in Water Emulsions: Optimization using CCD-RSM (밀배아유 원료 O/W 유화액의 제조 및 안정성평가: CCD-RSM을 이용한 최적화)

  • Hong, Seheum;Jang, Hyun Sik;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.32 no.5
    • /
    • pp.562-568
    • /
    • 2021
  • An O/W (oil in water) emulsion, wheat germ oil raw material, was produced by using natural wheat germ oil and composite sugar-ester. The effects of variables such as the hydrophile-lipophile balance (HLB) value, added emulsifier amount, and emulsification time on the average particle size, emulsification viscosity and ESI of O/W wheat germ oil emulsion were investigated. The parameters of the emulsification process produced by the central composite design model of the response surface methodology (CCD-RSM), which is a reaction surface analysis method, were simulated and optimized. The optimum process conditions obtained from this paper for the production of O/W wheat germ oil emulsion were 8.4, 6.4 wt%, 25.4 min for the HLB value, amount of emulsifier, and emulsion time, respectively. The predicted reaction values by CCD-RSM model under the optimum conditions were 206 nm, 8125 cP, and 98.2% for mean droplet size (MDS), viscosity, and ESI, respectively, based on the emulsion after 7 days. The MDS, viscosity and ESI of the emulsion obtained from actual experiments were 209 nm, 7974 cP and 98.7%, respectively. Therefore, it was possible to design an optimization process for evaluating the stability of the emulsion of wheat germ oil raw material by CCD-RSM.