• 제목/요약/키워드: response surface design

검색결과 1,831건 처리시간 0.042초

반응표면법을 이용한 동기형 릴럭턴스 전동기의 고토크밀도 및 저토크리플을 위한 용량별 최적설계 (Optimum Design Criteria for Maximum Torque Density & Minimum Torque Ripple of SynRM according to the Rated Wattage using Response Surface Methodology)

  • 최윤철;문성주;이중호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.780-781
    • /
    • 2008
  • This paper deals with optimum design criteria for maximum torque density & minimum torque ripple of Synchronous Reluctance Motor (SynRM) according to the rated wattage using response surface methodology (RSM). The RSM has been achieved to use the experimental design method in combination with Finite Element Method and well adapted to make analytical model for a complex problem considering a lot of interaction of design variables. The proposed procedure allows to define the rotor optimum shape for maximum torque density & minimum torque ripple starting from an existing motor or a preliminary design.

  • PDF

반응표면법과 유한요소법을 이용한 250kW급 견인 유도전동기의 고효율을 위한 최적 설계 (Optimum Design For Premium Efficiency of 250kW Traction Induction Motor Using Response Surface Methodology & FEM)

  • 조용현;임황빈;이중호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.782-783
    • /
    • 2008
  • This paper deals with optimum design criteria for premium efficiency of 250kW traction induction motor using response surface methodology (RSM) & finite element method (FEM). The RSM has been achieved to use the experimental design method in combination with Finite Element Method and well adapted to make analytical model for a complex problem considering a lot of interaction of design variables. The proposed procedure allows to define the rotor copper bar shape, stator slot and stator, rotor dimensions starting from an existing motor or a preliminary design.

  • PDF

Conservative Quadratic RSM combined with Incomplete Small Composite Design and Conservative Least Squares Fitting

  • Kim, Min-Soo;Heo, Seung-Jin
    • Journal of Mechanical Science and Technology
    • /
    • 제17권5호
    • /
    • pp.698-707
    • /
    • 2003
  • A new quadratic response surface modeling method is presented. In this method, the incomplete small composite design (ISCD) is newly proposed to .educe the number of experimental runs than that of the SCD. Unlike the SCD, the proposed ISCD always gives a unique design assessed on the number of factors, although it may induce the rank-deficiency in the normal equation. Thus, the singular value decomposition (SVD) is employed to solve the normal equation. Then, the duality theory is used to newly develop the conservative least squares fitting (CONFIT) method. This can directly control the ever- or the under-estimation behavior of the approximate functions. Finally, the performance of CONFIT is numerically shown by comparing its'conservativeness with that of conventional fitting method. Also, optimizing one practical design problem numerically shows the effectiveness of the sequential approximate optimization (SAO) combined with the proposed ISCD and CONFIT.

반응표면법을 이용한 집중권선 동기 릴럭턴스 전동기의 토크 리플 저감에 관한 회전자 설계 (Rotor Design on Torque Ripple Reduction for a Synchronous Reluctance Motor with Concentrated Winding using Response Surface Methodology)

  • 박중민;이중호
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권12호
    • /
    • pp.623-627
    • /
    • 2006
  • This paper deals with the optimum rotor design solution on torque ripple reduction for a SynRM with concentrated winding using response surface methodology (RSM). The RSM has been achieved to use the experimental design method in combination with finite element method (FEM)and well adapted to make analytical model for a complex problem considering a lot of interaction of design variables. Comparisons are given with characteristics of a SynRM according to flux barrier number, flux barrier width variation, respectively.

영구자석의 착자방향을 고려한 브러시리스DC 전동기의 효율 최적화 설계 (Efficiency Optimal Design of a Brushless DC Motor Considering the Magnetization Direction of Permanent Magnet)

  • 송정현;김병택
    • 제어로봇시스템학회논문지
    • /
    • 제17권3호
    • /
    • pp.241-247
    • /
    • 2011
  • This paper is intended to improve efficiency of two-phase BLDC motor using analytical and statistical methods, and then the stability of the starting for the designed model is investigated. The characteristics of the motor according to magnetization directions of permanent magnet are analyzed through the analytical method, and design variables that affect the efficiency are selected. Preliminary optimal design is performed using the analytical method with the design variable. The RSM (Response Surface Method) based on the FEA (Finite Element Analysis) is applied to complement errors of the analytical method. As a result, the optimal design is determined. Finally, the stability of the starting for the optimal designed model is evaluated by analyzing cogging torque, and it is verified through the FEA.

반응표면분석법을 이용한 수처리용 플라즈마 공정 설계의 최적화 (Optimization of Design of Plasma Process for Water Treatment using Response Surface Method)

  • 김동석;박영식
    • 한국물환경학회지
    • /
    • 제27권5호
    • /
    • pp.617-624
    • /
    • 2011
  • In order to confirm the creation of the OH radical which influences to RNO bleaching processes, it experimented using laboratory reactor of dielectric barrier discharge plasma (DBDP). The experiments performed in about 4 kind process variables (diameter of ground electrode, diameter of discharge electrode, diameter of quartz tube and effect of air flow rate) which influence to process. In order to examine optimum conditions of design factors as shown in Box-Behnken experiment design, ANOVA analysis was conducted against four factors. The actual RNO removal at optimized conditions under real design constraints were obtained, confirming Box-Behnken results. Optimized conditions under real design constraints were obtained for the highest desirability at 1, 1 mm diameter of ground and discharge electrode, 6 mm diameter of quartz tube and 5.05 L/min air flow rate, respectively.

디스플레이 유리의 눈부심 방지 표면처리를 위한 샌드 블래스팅 공정의 모형화 (Modeling of Sand Blasting Process for Anti-Glare Surface Treatment of Display Glass)

  • 민철홍;김태선
    • 한국표면공학회지
    • /
    • 제51권5호
    • /
    • pp.303-308
    • /
    • 2018
  • Currently hydrofluoric acid (HF) based glass etch method is widely used for anti-glare (AG) surface treatment since it can effectively alleviate the specular reflection problem with relatively low processing cost. However, due to the environmental regulation and safety problem, it is essential to develop alternative technology to replace this method. For this, in this paper, we propose sand blasting based AG surface treatment method for display glass. To characterize the sand blasting process, surface roughness, haze, surface durability, and flatness are considered as process outputs and central composite design (CCD) method and response surface model (RSM) method are applied to model each process output. Models for surface roughness and haze showed 96.44% and 97.24% of R-squared values, respectively and they can be applied to optimize AG surface treatment process for various haze level requirements of display industries.

유출홀이 설치된 정사각유로 내 열전달 향상을 위한 경사진 요철 최적설계 (Optimization of Angled Ribs for Heat Transfer Enhancement in Square Channel with Bleed Flow)

  • 이현;김경민;이동현;조형희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2384-2389
    • /
    • 2007
  • The 2nd order response surface method (RSM) has been carried out to get optimum thermal design for enhanced heat transfer on square channel with bleed holes. The RSM was used as an optimization technique with Reynolds-averaged navier-stokes equation. Turbulence model for heat transfer analysis used RNG k-epsilon model. The wall function used enhanced wall function. Numerical local heat transfer coefficients were similar to the experimental tendency. Two design variables such as attack angle of rib (${\alpha}$), rib pitch-to-rib height ratio (p/e) were chosen. Operation condition considered bleeding ratio per bleed hole ($BR_{hole}$). A response surface were constructed by the design variables and operation condition. As a result, adjusted $R^2$ was more than 0.9. Optimization results of various objective function were similar to heat transfer in channel with and without bleed flow. But friction factor was lower than channel without bleed flow.

  • PDF

반응표면법을 이용한 DTF의 석탄 연소 안전성 평가 (Assessment of Coal Combustion Safety of DTF using Response Surface Method)

  • 이의주
    • 한국안전학회지
    • /
    • 제30권1호
    • /
    • pp.8-13
    • /
    • 2015
  • The experimental design methodology was applied in the drop tube furnace (DTF) to predict the various combustion properties according to the operating conditions and to assess the coal plant safety. Response surface method (RSM) was introduced as a design of experiment, and the database for RSM was set with the numerical simulation of DTF. The dependent variables such as burnout ratios (BOR) of coal and $CO/CO_2$ ratios were mathematically described as a function of three independent variables (coal particle size, carrier gas flow rate, wall temperature) being modeled by the use of the central composite design (CCD), and evaluated using a second-order polynomial multiple regression model. The prediction of BOR showed a high coefficient of determination (R2) value, thus ensuring a satisfactory adjustment of the second-order polynomial multiple regression model with the simulation data. However, $CO/CO_2$ ratio had a big difference between calculated values and predicted values using conventional RSM, which might be mainly due to the dependent variable increses or decrease very steeply, and hence the second order polynomial cannot follow the rates. To relax the increasing rate of dependent variable, $CO/CO_2$ ratio was taken as common logarithms and worked again with RSM. The application of logarithms in the transformation of dependent variables showed that the accuracy was highly enhanced and predicted the simulation data well.

V-형 리브가 부착된 냉각유로의 형상 최적설계 (Shape Optimization of Cooling Channel with V-shaped Ribs)

  • 이영모;김광용
    • 한국유체기계학회 논문집
    • /
    • 제10권2호
    • /
    • pp.7-15
    • /
    • 2007
  • A numerical procedure for optimizing the shape of three-dimensional channel with V-shaped ribs extruded on both walls has been carried out to enhance the turbulent heat transfer. The response surface based optimization is used as an optimization technique with Reynolds-averaged Wavier-stoked analysis. Shear stress transport (SST) turbulence model is used as a turbulence closure. Computational results for average heat transfer rate show good agreements with experimental data. The objective function is defined as a linear combination of heat transfer and friction loss-related terms with a weighting factor. Three dimensionless variables such as, rib pitch-to-rib height ratio, rib height-to-channel height ratio, and the attack angle of the rib are chosen as design variables. Nineteen training points obtained by D-optimal designs for three design variables construct a reliable response surface. In the sensitivity analysis, it is found that the objective function is most sensitive to the ratio of rib height-to-channel height ratio. And, optimal values of design variables have been obtained in a range of the weighting factor.