• Title/Summary/Keyword: response prediction

Search Result 1,372, Processing Time 0.03 seconds

Optimal Sensor Placement for Improved Prediction Accuracy of Structural Responses in Model Test of Multi-Linked Floating Offshore Systems Using Genetic Algorithms (다중연결 해양부유체의 모형시험 구조응답 예측정확도 향상을 위한 유전알고리즘을 이용한 센서배치 최적화)

  • Kichan Sim;Kangsu Lee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.3
    • /
    • pp.163-171
    • /
    • 2024
  • Structural health monitoring for ships and offshore structures is important in various aspects. Ships and offshore structures are continuously exposed to various environmental conditions, such as waves, wind, and currents. In the event of an accident, immense economic losses, environmental pollution, and safety problems can occur, so it is necessary to detect structural damage or defects early. In this study, structural response data of multi-linked floating offshore structures under various wave load conditions was calculated by performing fluid-structure coupled analysis. Furthermore, the order reduction method with distortion base mode was applied to the structures for predicting the structural response by using the results of numerical analysis. The distortion base mode order reduction method can predict the structural response of a desired area with high accuracy, but prediction performance is affected by sensor arrangement. Optimization based on a genetic algorithm was performed to search for optimal sensor arrangement and improve the prediction performance of the distortion base mode-based reduced-order model. Consequently, a sensor arrangement that predicted the structural response with an error of about 84.0% less than the initial sensor arrangement was derived based on the root mean squared error, which is a prediction performance evaluation index. The computational cost was reduced by about 8 times compared to evaluating the prediction performance of reduced-order models for a total of 43,758 sensor arrangement combinations. and the expected performance was overturned to approximately 84.0% based on sensor placement, including the largest square root error.

Predictability of the Seasonal Simulation by the METRI 3-month Prediction System (기상연구소 3개월 예측시스템의 예측성 평가)

  • Byun, Young-Hwa;Song, Jee-Hye;Park, Suhee;Lim, Han-Chul
    • Atmosphere
    • /
    • v.17 no.1
    • /
    • pp.27-44
    • /
    • 2007
  • The purpose of this study is to investigate predictability of the seasonal simulation by the METRI (Meteorological Research Institute) AGCM (Atmospheric General Circulation Model), which is a long-term prediction model for the METRI 3-month prediction system. We examine the performance skill of climate simulation and predictability by the analysis of variance of the METRI AGCM, focusing on the precipitation, 850 hPa temperature, and 500 hPa geopotential height. According to the result, the METRI AGCM shows systematic errors with seasonal march, and represents large errors over the equatorial region, compared to the observation. Also, the response of the METRI AGCM by the variation of the sea surface temperature is obvious for the wintertime and springtime. However, the METRI AGCM does not show the significant ENSO-related signal in autumn. In case of prediction over the east Asian region, errors between the prediction results and the observation are not quite large with the lead-time. However, in the predictability assessment using the analysis of variance method, longer lead-time makes the prediction better, and the predictability becomes better in the springtime.

Prediction of the % Hardness Curve of Cellulose Acetate Mono Filters (셀룰로오스 아세테이트 모노 필터의 경도 예측)

  • Kim Jong-Yeol;Kim Soo-Ho;Shin Chang-Ho;Park Jin-Won;Lim Sung-Jin;Kim Chung-Ryul;Rhee Moon-Soo
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.28 no.1
    • /
    • pp.43-50
    • /
    • 2006
  • The objective of the present study is to induct the regression equation for the hardness prediction of cellulose acetate filter which was manufactured by the domestic cellulose acetate tow manufacturer. As a result of our study, the hardness of filter was increased with increasing the plasticizer content and packing density as major factors affecting to the filter hardness. As a result which was obtained by the three dimensional response surface methodology in STATISTIC A program, the hardness prediction value well fitted with experiment result on the high plasticizer content. To make up for the this equation, the new modified fraction of solid factors which was contained the mono denier factor was introduced to the hardness prediction equation, and this third regression equation which was sufficient for the wide plasticizer content, was obtained by the three dimensional response surface methodology in STATISTICA. This results indicated that the third regression equation which was obtained this study was applicable for the hardness prediction of cellulose acetate filter which was manufactured by the domestic cellulose acetate tow manufacturer.

Prediction of Pollutant Emission Distribution for Quantitative Risk Assessment (정량적 위험성평가를 위한 배출 오염물질 분포 예측)

  • Lee, Eui Ju
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.48-54
    • /
    • 2016
  • The prediction of various emissions from coal combustion is an important subject of researchers and engineers because of environmental consideration. Therefore, the development of the models for predicting pollutants very fast has received much attention from international research community, especially in the field of safety assessment. In this work, response surface method was introduced as a design of experiment, and the database for RSM was set with the numerical simulation of a drop tube furnace (DTF) to predict the spatial distribution of pollutant concentrations as well as final ones. The distribution of carbon dioxide in DTF was assumed to have Boltzman function, and the resulted function with parameters of a high $R^2$ value facilitates predicting an accurate distribution of $CO_2$. However, CO distribution had a difference near peak concentration when Gaussian function was introduced to simulate the CO distribution. It might be mainly due to the anti-symmetry of the CO concentration in DTF, and hence Extreme function was used to permit the asymmetry. The application of Extreme function enhanced the regression accuracy of parameters and the prediction was in a fairly good agreement with the new experiments. These results promise the wide use of statistical models for the quantitative safety assessment.

A Study on Accuracy Improvement of Dual Micro Patterns Using Magnetic Abrasive Deburring (자기 디버링을 이용한 복합 미세패턴의 형상 정밀도 향상)

  • Jin, Dong-Hyun;Kwak, Jae-Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.11
    • /
    • pp.943-948
    • /
    • 2016
  • In recent times, the requirement of a micro pattern on the surface of products has been increasing, and high precision in the fabrication of the pattern is required. Hence, in this study, dual micro patterns were fabricated on a cylindrical workpiece, and deburring was performed by magnetic abrasive deburring (MAD) process. A prediction model was developed, and the MAD process was optimized using the response surface method. When the predicted values were compared with the experimental results, the average prediction error was found to be approximately 7%. Experimental verification shows fabrication of high accuracy dual micro pattern and reliability of prediction model.

A study on multi-objective optimal design of derrick structure: Case study

  • Lee, Jae-chul;Jeong, Ji-ho;Wilson, Philip;Lee, Soon-sup;Lee, Tak-kee;Lee, Jong-Hyun;Shin, Sung-chul
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.6
    • /
    • pp.661-669
    • /
    • 2018
  • Engineering system problems consist of multi-objective optimisation and the performance analysis is generally time consuming. To optimise the system concerning its performance, many researchers perform the optimisation using an approximation model. The Response Surface Method (RSM) is usually used to predict the system performance in many research fields, but it shows prediction errors for highly nonlinear problems. To create an appropriate metamodel for marine systems, Lee (2015) compares the prediction accuracy of the approximation model, and multi-objective optimal design framework is proposed based on a confirmed approximation model. The proposed framework is composed of three parts: definition of geometry, generation of approximation model, and optimisation. The major objective of this paper is to confirm the applicability/usability of the proposed optimal design framework and evaluate the prediction accuracy based on sensitivity analysis. We have evaluated the proposed framework applicability in derrick structure optimisation considering its structural performance.

Multiple linear regression and fuzzy linear regression based assessment of postseismic structural damage indices

  • Fani I. Gkountakou;Anaxagoras Elenas;Basil K. Papadopoulos
    • Earthquakes and Structures
    • /
    • v.24 no.6
    • /
    • pp.429-437
    • /
    • 2023
  • This paper studied the prediction of structural damage indices to buildings after earthquake occurrence using Multiple Linear Regression (MLR) and Fuzzy Linear Regression (FLR) methods. Particularly, the structural damage degree, represented by the Maximum Inter Story Drift Ratio (MISDR), is an essential factor that ensures the safety of the building. Thus, the seismic response of a steel building was evaluated, utilizing 65 seismic accelerograms as input signals. Among the several response quantities, the focus is on the MISDR, which expresses the postseismic damage status. Using MLR and FLR methods and comparing the outputs with the corresponding evaluated by nonlinear dynamic analyses, it was concluded that the FLR method had the most accurate prediction results in contrast to the MLR method. A blind prediction applying a set of another 10 artificial accelerograms also examined the model's effectiveness. The results revealed that the use of the FLR method had the smallest average percentage error level for every set of applied accelerograms, and thus it is a suitable modeling tool in earthquake engineering.

A real-time unmeasured dynamic response prediction for nuclear facility pressure pipeline system

  • Seungin Oh ;Hyunwoo Baek ;Kang-Heon Lee ;Dae-Sic Jang;Jihyun Jun ;Jin-Gyun Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2642-2649
    • /
    • 2023
  • A real-time unmeasured dynamic response prediction process for the nuclear power plant pressure pipeline is proposed and its performance is tested in the test-loop system (KAERI). The aim of the process is to predict unmeasurable or unreachable dynamic responses such as acceleration, velocity, and displacement by using a limited amount of directly measured physical responses. It is achieved by combining a well-constructed finite element model and robust inverse force identification algorithm. The pressure pipeline system is described by using the displacement-pressure vibro-acoustic formulation to consider fully filled liquid effect inside the pipeline structure. A robust multiphysics modal projection technique is employed for the real-time sensor synchronized prediction. The inverse force identification method is also derived and employed by using Bathe's time integration method to identify the full-field responses of the target system from the modal domain computation. To validate the performance of the proposed process, an experimental test is extensively performed on the nuclear power plant pressure pipeline test-loop under operation conditions. The results show that the proposed identification process could well estimate the unmeasured acceleration in both frequency and time domain faster than 32,768 samples per sec.

Prediction Method of Loudspeaker Driver Characteristics (스피커 드라이브 특성 예측 기법)

  • Park, Soon-Jong;Rho, Sung-Tak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.7
    • /
    • pp.325-332
    • /
    • 2008
  • The prediction method of TS parameters, frequency response, and electrical input impedance is proposed with physical properties of parts and results of electromagnetic FEA(Finite Element Analysis) in a loudspeaker driver design. In design for weight reduction and improvement of flux density asymmetry, the prediction results are well coincided with measurement ones. As the applications, it can be applied in design for improvement of the $2^{nd}$ harmonic distortion with flux density distribution analysis. The proposed method is expected to be utilized for reducing trial-and-error process in electromagnetic parts design. It can also be used for providing guidelines for parts selection in the early stages.

A SE Approach for Real-Time NPP Response Prediction under CEA Withdrawal Accident Conditions

  • Felix Isuwa, Wapachi;Aya, Diab
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.18 no.2
    • /
    • pp.75-93
    • /
    • 2022
  • Machine learning (ML) data-driven meta-model is proposed as a surrogate model to reduce the excessive computational cost of the physics-based model and facilitate the real-time prediction of a nuclear power plant's transient response. To forecast the transient response three machine learning (ML) meta-models based on recurrent neural networks (RNNs); specifically, Long Short Term Memory (LSTM), Gated Recurrent Unit (GRU), and a sequence combination of Convolutional Neural Network (CNN) and LSTM are developed. The chosen accident scenario is a control element assembly withdrawal at power concurrent with the Loss Of Offsite Power (LOOP). The transient response was obtained using the best estimate thermal hydraulics code, MARS-KS, and cross-validated against the Design and control document (DCD). DAKOTA software is loosely coupled with MARS-KS code via a python interface to perform the Best Estimate Plus Uncertainty Quantification (BEPU) analysis and generate a time series database of the system response to train, test and validate the ML meta-models. Key uncertain parameters identified as required by the CASU methodology were propagated using the non-parametric Monte-Carlo (MC) random propagation and Latin Hypercube Sampling technique until a statistically significant database (181 samples) as required by Wilk's fifth order is achieved with 95% probability and 95% confidence level. The three ML RNN models were built and optimized with the help of the Talos tool and demonstrated excellent performance in forecasting the most probable NPP transient response. This research was guided by the Systems Engineering (SE) approach for the systematic and efficient planning and execution of the research.