• Title/Summary/Keyword: response influence factor

Search Result 366, Processing Time 0.031 seconds

Medium Optimization for the Production of Probiotic Lactobacillus acidophilus A12 Using Response Surface Methodology

  • Lee, Na-Kyoung;Park, Yeo-Lang;Choe, Ga-Jin;Chang, Hyo-Ihl;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.30 no.3
    • /
    • pp.359-364
    • /
    • 2010
  • Lactobacillus acidophilus A12 was isolated from chicken feces for use as an immunostimulating livestock probiotic. The purpose of this study was to optimize the production of L. acidophilus A12 using response surface methodology (RSM). Initially, the influence of growth medium was studied in terms of carbon sources (glucose, fructose, lactose, glycerol, sucrose, ethanol, and mannitol), nitrogen sources (beef extract, yeast extract, malt extract, and tryptone), and inorganic salts ($CaCl_2$, $MgSO_4$, $KH_2PO_4$, $(NH_4)_2SO_4$, $FeSO_4$, and NaCl). Through one factor-at-a time experiment, lactose, yeast extract, and $CaCl_2$ were determined to be the best sources of carbon, nitrogen, and inorganic salt, respectively. The optimum composition was found to be 17.7 g/L lactose, 18.6 g/L yeast extract, and 0.9 g/L $CaCl_2$. Under these conditions, a maximum cell density of 9.33 Log CFU/mL was produced, similar to the predicted value.

Multi-response Optimization for Unfertilized Corn Silk Extraction Against Phytochemical Contents and Bio-activities

  • Lim, Ji Eun;Kim, Sun Lim;Kang, Hyeon Jung;Kim, Woo Kyoung;Kim, Myung Hwan
    • Food Engineering Progress
    • /
    • v.21 no.3
    • /
    • pp.256-266
    • /
    • 2017
  • This study was designed to optimize ethanol extraction process of unfertilized corn silk (UCS) to maximize phytochemical contents and bioactivities. The response surface methodology (RSM) with central composite design (CCD) was employed to obtain the optimal extraction conditions. The influence of ethanol concentration, extraction temperature and extraction time on total polyphenol contents, total flavonoid contents, maysin contents, 2,2-diphenyl-1-picrylhydrazyl(DPPH) radical scavenging activities and tyrosinase inhibition were analyzed. For all dependable variables, the most significant factor was ethanol concentration followed by extraction temperature and extraction time. The following optimum conditions were determined by simultaneous optimization of several responses with the Derringer's desirability function using the numerical optimization function of the Design-Expert program: ethanol concentration 80.45%, extraction temperature $53.49^{\circ}C$, and extraction time 4.95 h. Under these conditions, the predicted values of total polyphenol contents, total flavonoid contents, maysin contents, DPPH radical scavenging activity and tyrosinase inhibition were $2758.74{\mu}g\;GAE/g$ dried sample, $1520.81{\mu}g\;QUE/g$ dried sample, 810.26 mg/100g dried sample, 56.86% and 43.49%, respectively, and the overall desirability (D) was 0.74.

Influence of surface irregularity on dynamic response induced due to a moving load on functionally graded piezoelectric material substrate

  • Singh, Abhishek K.;Negi, Anil;Koley, Siddhartha
    • Smart Structures and Systems
    • /
    • v.23 no.1
    • /
    • pp.31-44
    • /
    • 2019
  • The present study investigate the compressive stress, shear stress, tensile stress, vertical electrical displacement and horizontal electrical displacement induced due to a load moving with uniform velocity on the free rough surface of an irregular transversely isotropic functionally graded piezoelectric material (FGPM) substrate. The closed form expressions ofsaid induced stresses and electrical displacements for both electrically open condition and electrically short condition have been deduced. The influence of various affecting parameters viz. maximum depth of irregularity, irregularity factor, parameter of functionally gradedness, frictional coefficient of the rough upper surface, piezoelectricity/dielectricity on said induced stresses and electrical displacements have been examined through numerical computation and graphical illustration for both electrically open and short conditions. The comparative analysis on the influence of electrically open and short conditions as well as presence and absence of piezoelectricity on the induced stresses and induced electrical displacements due to a moving load serve as the salient features of the present study. Moreover, some important peculiarities have also been traced out by means of graphs.

HPV-Associated p16INK4A Expression and Response to Therapy and Survival in Selected Head and Neck Cancers

  • Kanyilmaz, Gul;Ekinci, Ozgur;Muge, Akmansu;Celik, Sevinc;Ozturk, Furkan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.1
    • /
    • pp.253-258
    • /
    • 2015
  • Background: Development of squamous cell cancer of head and neck (SCCHN) is associated with human papillomavirus (HPV) infection, which in turn is closely related with expression of $p16^{INK4A}$. Loss of $p16^{INK4A}$ expression by deletion, mutation, or hypermethylation is common in SCCHN. We here evaluated $p16^{INK4A}$ as a prognostic marker of treatment response and survival in our SCCHN patients with laryngeal, hypopharyngeal or nasopharyngeal cancers. Materials and Methods: 131 patients diagnosed with SCCHN between January 2,2006 and July 17, 2010 were examined for $p16^{INK4A}$. The median age was 60 years (15-82 years). Fifty one patients were stage I-II and 80 were stage III-IV. Immunohistochemical expression of $p16^{INK4A}$ was analyzed in pretreatment paraffin-embedded tumor blocks. The influence of $p16^{INK4A}$ status on disease-free survival, and overall survival after treatment was evaluated. Results: $p16^{INK4A}$ positivity was found in 58 patients (44%). Tumor-positivity for$ p16^{INK4A}$ was correlated with improved disease free survival (70.1 months vs 59 months) and improved overall survival (2, 3 and 5-year values; 77% vs 72%, 70% vs 63% and, 63% vs 55%; respectively). On multivariate analysis, stage was determined as independent prognostic factor for disease-free survival. Conclusions: Stage was the major prognostic factor on treatment response and survival in our patients. $p16^{INK4A}$ status predicts better outcome in laryngeal, hypopharyngeal or nasopharyngeal cancer cases treated with surgery plus adjuvant radiochemotherapy as well as with definitive radiation therapy and/or chemotherapy.

Analysis of Watershed Hydrologic Responses using Hydrologic Index (수문지수를 이용한 유역의 수문반응 분석)

  • Park, Yoonkyung;Kim, Sangdan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.785-794
    • /
    • 2014
  • Hydrologic responses in watershed are determined by complex interactions among climate, land use, soil and vegetation. In order to effectively investigate hydrologic response in watershed, one needs to analyze the characteristics of climate as well as other factors. In this study, the relative contribution of climate factors and watershed characteristics on hydrologic response is investigated by using hydrologic indexes such as the aridity index and the Horton index. From preliminary analysis, it is shown that the Horton index is proper in terms of classifying hydrologic responses in main natural watersheds of south Korea. While climate and watershed characteristics both contributes to hydrologic responses, the degree contributed from each factor is changed depending on annual climatic humid conditions. In dry conditions, the climate factor is the predominant influence on hydrologic responses. However, in wet conditions, the contribution of watershed characteristics on hydrologic responses is relatively increased.

The Physical Environment Influence of Chinese Department Stores and Consumer's Internal Responses on Store Loyalty (중국 백화점의 물리적 환경에 따른 소비자의 내적반응이 점포충성도에 미치는 영향)

  • Zhang, Ting-Ting;Jun, Ji-Hyun;Rhee, Young-Sun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.37 no.2
    • /
    • pp.202-212
    • /
    • 2013
  • Outstanding service quality is a crucial factor to increase customer revisits, to increase customer revisits, to create new customers through positive word-of-mouth marketing and increase profits; in conjunction, the physical environment of department stores have a firsthand impact on customer purchasing behavior. This study examines the physical environment dimensions of department stores in China and the causal relationship with the physical environment, service environment, internal responses and store loyalty. The subjects in this study were male and female adults who finished the shopping the Lotte and Wangfujing Department Store located in Beijing. All participants were over the age of 20 and a one-on-one survey was conducted to gather data from October to November 2011. Data from 424 respondents were analyzed: in addition, AMOS factor analysis and path analysis were used. The results were as follows. First, physical environment factors consist of exterior aesthetic attraction, convenience, cleanliness and an interior aesthetic attraction. Second, exterior aesthetic attraction, convenience and cleanliness affect the overall service environment perception. Third, the service environment exercised an influence on internal responses, and internal responses impacted store loyalty. Fourth, a comparative analysis was made over Korean and Chinese department stores in China to check the research model. In Wangfujing Department Store, exterior aesthetic attraction, cleanliness and convenience had a statistically significant impact on service environment perceptions. In Lotte Department Store, the perception of service environment was under the statistically significant influence of all physical factors (exterior aesthetic attraction, interior aesthetic attraction, convenience and cleanliness). The findings of this study are helpful for Korean Department stores that plan to make inroads into China to formulate efficient service environment strategies tailored to local consumer characteristics.

Nano-engineered concrete using recycled aggregates and nano-silica: Taguchi approach

  • Prusty, Rajeswari;Mukharjee, Bibhuti B.;Barai, Sudhirkumar V.
    • Advances in concrete construction
    • /
    • v.3 no.4
    • /
    • pp.253-268
    • /
    • 2015
  • This paper investigates the influence of various mix design parameters on the characteristics of concrete containing recycled coarse aggregates and Nano-Silica using Taguchi method. The present study adopts Water-cement ratio, Recycled Coarse Aggregate (%), Maximum cement content and Nano-Silica (%) as factors with each one having three different levels. Using the above mentioned control parameters with levels an Orthogonal Array (OA) matrix experiments of L9 (34) has selected and nine number of concrete mixes has been prepared. Compressive Strength, Split Tensile Strength, Flexural Tensile Strength, Modulus of Elasticity and Non-Destructive parameters are selected as responses. Experimental results are analyzed and the optimum level for each response is predicted. Analysis of 28 days CS depicts that NS (%) is the most significant factor among all factors. Analysis of the tensile strength results indicates that the effect of control factor W/C ratio is ranked one and then NS (%) is ranked two which suggests that W/C ratio and NS (%) have more influence as compared to other two factors. However, the factor that affects the modulus of elasticity most is found to be RCA (%). Finally, validation experiments have been carried out with the optimal mixture of concrete with Nano-Silica for the desired engineering properties of recycled aggregate concrete. Moreover, the comparative study of the predicted and experimental results concludes that errors between both experimental and predicted values are within the permissible limits. This present study highlights the application of Taguchi method as an efficient tool in determining the effects of constituent materials in mix proportioning of concrete.

Strengthening of the panel zone in steel moment-resisting frames

  • Abedini, Masoud;Raman, Sudharshan N.;Mutalib, Azrul A.;Akhlaghi, Ebrahim
    • Advances in Computational Design
    • /
    • v.4 no.4
    • /
    • pp.327-342
    • /
    • 2019
  • Rehabilitation and retrofitting of structures designed in accordance to standard design codes is an essential practice in structural engineering and design. For steel structures, one of the challenges is to strengthen the panel zone as well as its analysis in moment-resisting frames. In this research, investigations were undertaken to analyze the influence of the panel zone in the response of structural frames through a computational approach using ETABS software. Moment-resisting frames of six stories were studied in supposition of real panel zone, different values of rigid zone factor, different thickness of double plates, and both double plates and rigid zone factor together. The frames were analyzed, designed and validated in accordance to Iranian steel building code. The results of drift values for six stories building models were plotted. After verifying and comparing the results, the findings showed that the rigidity lead to reduction in drifts of frames and also as a result, lower rigidity will be used for high rise building and higher rigidity will be used for low rise building. In frames with story drifts more than the permitted rate, where the frames are considered as the weaker panel zone area, the story drifts can be limited by strengthening the panel zone with double plates. It should be noted that higher thickness of double plates and higher rigidity of panel zone will result in enhancement of the non-linear deformation rates in beam elements. The resulting deformations of the panel zone due to this modification can have significant influence on the elastic and inelastic behavior of the frames.

Transcription Factor EB-Mediated Lysosomal Function Regulation for Determining Stem Cell Fate under Metabolic Stress

  • Chang Woo Chae;Young Hyun Jung;Ho Jae Han
    • Molecules and Cells
    • /
    • v.46 no.12
    • /
    • pp.727-735
    • /
    • 2023
  • Stem cells require high amounts of energy to replicate their genome and organelles and differentiate into numerous cell types. Therefore, metabolic stress has a major impact on stem cell fate determination, including self-renewal, quiescence, and differentiation. Lysosomes are catabolic organelles that influence stem cell function and fate by regulating the degradation of intracellular components and maintaining cellular homeostasis in response to metabolic stress. Lysosomal functions altered by metabolic stress are tightly regulated by the transcription factor EB (TFEB) and TFE3, critical regulators of lysosomal gene expression. Therefore, understanding the regulatory mechanism of TFEB-mediated lysosomal function may provide some insight into stem cell fate determination under metabolic stress. In this review, we summarize the molecular mechanism of TFEB/TFE3 in modulating stem cell lysosomal function and then elucidate the role of TFEB/TFE3-mediated transcriptional activity in the determination of stem cell fate under metabolic stress.

A Study on Seismic Capacity Assessment of Long-Span Suspension Bridges by Construction Methods Considering Earthquake Characteristics (지진특성을 고려한 장경간 현수교량의 시공방안별 내진성능 평가에 관한 연구)

  • Han, Sung Ho;Jang, Sun Jae;Lim, Nam Hyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2A
    • /
    • pp.93-102
    • /
    • 2010
  • The numerical analysis and safety assessment by construction stages were considered the essential examination particular in order to solving the unstability of long-span bridges in the middle a construction. When estimating structural response characteristics by the construction stage analysis of long-span bridges, the influence of the near-field ground motion (NFGM) would be evaluated as a critical factor for the seismic design because it indicates clearly different aspects from the existing input earthquake motion data. Therefore, this study re-examined the response aspect of long-span bridges considering NFGM characteristics based on the response spectrum result, and advanced the presented numerical analysis program by the related research for conducting the construction stage analysis and reliability assessment of long-span bridges efficiently. The excellency of various construction schemes was assessed using the time history analysis result of critical member considering NFGM characteristics. For evaluating quantitative safety level, the reliability analysis was conducted considering the influence of external uncertainties included in random variables, and presented the safety index and failure probability of the critical construction stage by NFGM characteristics. In addition, the reliability result was examined the influence of internal uncertainties using monte carlo simulation (MCS), and assessed the distribution aspect of the essential analysis result. It is expected that this study will provide the basic information for the construction safety improvement when performing seismic design of long-span bridges considering NFGM characteristics.