• Title/Summary/Keyword: response in steady state

Search Result 600, Processing Time 0.026 seconds

Multiple Simultaneous Specification Control of Antagonistic Actuation by Pneumatic Artificial Muscles (공압형 인공근육으로 구동되는 상극구동의 다중 동시 사양 제어)

  • Kang, Bong-Soo
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.1
    • /
    • pp.34-41
    • /
    • 2011
  • This paper presents a frequency-response test performed on an antagonistic actuation system consisting of two Mckibben pneumatic artificial muscles and a pneumatic circuit. A linear model, capable of estimating the dynamic characteristics of the antagonistic system in the operating range of pneumatic artificial muscles, was optimally calculated based on frequency-response results and applied to a multiple simultaneous specification control scheme. Trajectory tracking results showed that the presented multiple simultaneous specification controller, built experimentally by three PD typed sample controllers, satisfied successfully all required control specifications; rising time, maximum overshoot, steady-state error.

FFC Design for PI Flow Control System Designed by CDM

  • Oh, Kyu-Kwon;Yu, Kee-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.151.3-151
    • /
    • 2001
  • A design of PI controller to be used to control the first-order lag plus dead time process, such as a flow process, by the coefficient diagram method (CDM) is investigated. The factor of the dead time of process is first approximated to be the first-order by the Pade approximation. The response of the flow control system designed by CDM satisfy both transient and steady state specifications. However, the transient response generally still has long rise time. In order to improve the speed of the system response, a feedforward controller (FFC) is added into the PI control system. The structure of the FFC is a phase lead structure with two designed parameters and one derivative time obtained from the reaction curve of the flow process ...

  • PDF

A Fast-Transient Repetitive Control Strategy for Programmable Harmonic Current Source

  • Lei, Wanjun;Nie, Cheng;Chen, Mingfeng;Wang, Huajia;Wang, Yue
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.172-180
    • /
    • 2017
  • The repetitive control (RC) strategy is widely used in AC power systems because of its high performance in tracking period signal and suppressing steady-state error. However, the dynamic response of RC is determined by the fundamental period delay $T_0$ existing in the internal model. In the current study, a ($nk{\pm}i$)-order harmonic RC structure is proposed to improve dynamic performance. The proposed structure has less data memory and can improve the tracking speed by n/2 times. $T_0$ proves the effectiveness of the ($nk{\pm}i$)-order RC strategy. The simulation and experiments of ($6k{\pm}1$)-order and ($4k{\pm}1$)-order RC strategy used in the voltage source inverter is conducted in this study to control the harmonic current source, which shows the validity and advantages of the proposed structure.

Nonlinear Analysis of a Forced Circular Plate with Internal Resonance (내부공진을 가진 원판의 비선형 강제진동해석)

  • 김철홍;이원경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2098-2110
    • /
    • 1992
  • An analysis is presented for the combination resonance of a clamped circular plate, which occurs when the frequency of the excitation is near the combination of the natural frequencies, that is, when ohm.=2.0mega./sub 1/+omega./sub 2/. The internal resonance, Omega./sub 3/=omega./sub 1/+2.omega./sub 2/, is considered and its influence on the response is studied. The clamped circular plate experiencing mid-plane stretching is governed by a nonlinear partial differential equation. By using Galerkin's method the governing equation is reduced to a system of nonautonomous ordinary differential equations. The method of multiple scales is used to obtain steady-state responses of the system. Results of numerical investigations show that the increase of the excitation amplitude can reduce the amplitudes of steady-state responses. We can not find this kind of results in linear systems.

DEVELOPMENT OF A SIMPLE CONTROL ALGORITHM FOR SWIRL MOTOR CONTROLLER

  • Lee, W.T.;Kang, J.J.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.369-375
    • /
    • 2006
  • This paper describes a simple proportional and integral control algorithm for a swirl motor controller and its application. The control algorithm may be complicated in order to have desired performance, such as low steady state errors, fast response time, and relatively low overshoot. At the same time, it should be compact so that it can be easily implemented on a low cost microcontroller, which has no floating-point calculation capability and low computing speed. These conflicting requirements are fulfilled by the proposed control algorithm which consists of a gain scheduling proportional controller and an anti-windup integral controller. The mechanical friction, which is caused by gears and a return spring, varies very nonlinearly according to the angular position of the system. This nonlinear static friction is overcome by the proportional controller, which has a two-dimensional look up gain table. It has error axis and angular position axis. The integral controller is designed not only to minimize the steady state error but also to avoid the windup effect, which may be caused by the saturation of a motor driver. The proposed control algorithm is verified by use of a commercial product to prove the feasibility of the algorithm.

The Steady-State Characteristic Analysis of 2MW PMSG based Direct-Drive Offshore Wind Turbine (2MW급 해상용 영구자석 직접 구동형 풍력 발전기의 정상상태 특성 해석)

  • Shin, Pyungho;Choi, Jungchul;Yoo, Chul;Kim, Daejin;Kyong, Namho;Ko, Heesang
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.3
    • /
    • pp.9-16
    • /
    • 2015
  • In order to support various studies for assessment of onshore and offshore wind turbine system including foundations, the land-based version of 2MW PMSG direct drive wind turbine has been analyzed using HAWC2 that account for the coupled dynamics of the wind inflow, elasticity, and controls of the turbine. this work presents the steady-state response of the system and natural frequency of the first thirteen structure turbine modes as a function of wind speed. Rotor, generator speeds, pitch angle, power production, thrust force, deflections of tower and blade are compared for one case below and one case above the rated wind speed.

Design of Dual Fuzzy Logic Controller using $e-{\Delta}e$ Phase Plane for Hydraulic Servo Motor (유압 서보 모터를 위한 $e-{\Delta}e$ 위상평면을 이용한 이중 퍼지 로직 제어기 설계)

  • Shin, Wee-Jae;Moon, Jeong-Hoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.3
    • /
    • pp.222-226
    • /
    • 2007
  • In this paper we composed the dual fuzzy rules using each region of specific points and $e-{\Delta}e$ phase plane In order to make dual fuzzy rule base. We composed the fuzzy control rules which can decrease rise time, delay time, maximum overshoot than basic fuzzy control rules. proposed method is alternately use at specific points of $e-{\Delta}e$ phase plane with two fuzzy control rules that is one control rule occruing the steady state error in transient region and another fuzzy control rule use to decrease the steady state error and rapidly converge at the convergence region. Also, two fuzzy control rules in the $e-{\Delta}e$ phase plane decide the change time according to response characteristics of plants. In order to confirm thef proposed algorithm. As the results of experiments through the hydraulic servo motor control system with a DSP processor, We verified that proposed dual fuzzy control rules get the good response compare with the basic fuzzy control rule.

  • PDF

Convergence Property Analysis of Multiple Modulus Self-Recovering Equalization According to Error Dynamics Boosting (다중 모듈러스 자기복원 등화의 오차 역동성 증강에 따른 수렴 특성 분석)

  • Oh, Kil Nam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.15-20
    • /
    • 2016
  • The existing multiple modulus-based self-recovering equalization type has not been applied to initial equalization. Instead, it was used for steady-state performance improvement. In this paper, for the self-recovering equalization type that considers the multiple modulus as a desired response, the initial convergence performance was improved by extending the dynamics of the errors using error boosting and their characteristics were analyzed. Error boosting in the proposed method was carried out in proportion to a symbol decision for the equalizer output. Furthermore, having the initial convergence capability by extending the dynamics of errors, it showed excellent performance in the initial convergence rate and steady-state error level. In particular, the proposed method can be applied to the entire process of equalization through a single algorithm; the existing methods of switching over or the selection of other operation modes, such as concurrent operating with other algorithms, are not necessary. The usefulness of the proposed method was verified by simulations performed under the channel conditions with multipath propagation and additional noise, and for performance analysis of self-recovering equalization for high-order signal constellations.

Differential Roles of Lung Dendritic Cell Subsets Against Respiratory Virus Infection

  • Kim, Tae Hoon;Lee, Heung Kyu
    • IMMUNE NETWORK
    • /
    • v.14 no.3
    • /
    • pp.128-137
    • /
    • 2014
  • Respiratory viruses can induce acute respiratory disease. Clinical symptoms and manifestations are dependent on interactions between the virus and host immune system. Dendritic cells (DCs), along with alveolar macrophages, constitute the first line of sentinel cells in the innate immune response against respiratory viral infection. DCs play an essential role in regulating the immune response by bridging innate and adaptive immunity. In the steady state, lung DCs can be subdivided into $CD103^+$ conventional DCs (cDCs), $CD11b^+$ cDCs, and plasmacytoid DCs (pDCs). In the inflammatory state, like a respiratory viral infection, monocyte-derived DCs (moDCs) are recruited to the lung. In inflammatory lung, discrimination between moDCs and $CD11b^+$ DCs in the inflamed lung has been a critical challenge in understanding their role in the antiviral response. In particular, $CD103^+$ cDCs migrate from the intraepithelial base to the draining mediastinal lymph nodes to primarily induce the $CD8^+$ T cell response against the invading virus. Lymphoid $CD8{\alpha}^+$ cDCs, which have a developmental relationship with $CD103^+$ cDCs, also play an important role in viral antigen presentation. Moreover, pDCs have been reported to promote an antiviral response by inducing type I interferon production rather than adaptive immunity. However, the role of these cells in respiratory infections remains unclear. These different DC subsets have functional specialization against respiratory viral infection. Under certain viral infection, contextually controlling the balance of these specialized DC subsets is important for an effective immune response and maintenance of homeostasis.

Effects of Residual Hearing on the Auditory Steady State Response for Cochlear Implantation in Children

  • Kim, Young Seok;Han, Sun A;Woo, Hyunjun;Suh, Myung-Whan;Lee, Jun Ho;Oh, Seung Ha;Park, Moo Kyun
    • Journal of Audiology & Otology
    • /
    • v.23 no.3
    • /
    • pp.153-159
    • /
    • 2019
  • Background and Objectives: We aim to explore the effects of residual auditory steady state response (ASSR) on cochlear implantation (CI) outcomes in children lacking auditory brainstem responses (ABRs). Subjects and Methods: We retrospectively reviewed the data of child CI recipients lacking ABRs. All ears were divided into two groups: with residual ASSR and without ASSR. For each frequency, the T- and C-levels and the electrical dynamic ranges of postoperative 3-month and 1-year mappings were compared between the groups. To evaluate speech perception, patients who received simultaneous bilateral CIs were divided into two groups: group 1 exhibited responses at all frequencies in both ears; in group 2, at least one ear evidenced no response. The Categories of Auditory Perception (CAP) and Infant-Toddler Meaningful Auditory Integration Scale (IT-MAIS) scores were compared between the groups. Results: We enrolled 16 patients. At 2 kHz, the postoperative 3-month and 1-year T-levels of patients with residual hearing were lower than those of hearing loss group (p=0.001, p=0.035). In residual hearing group, the ASSR threshold correlated positively with the postoperative 1-year T-level (p=0.012, R2=0.276) and C-level (p=0.002, R2=0.374). Of 10 simultaneous bilateral CI recipients, 5 exhibited ASSRs at all frequencies and the other 5 showed no response at ≥1 frequency. The latter had higher CAP scores at the postoperative 1-year (p=0.018). Conclusions: In children exhibiting hearing loss in ABR testing, residual hearing at 2 kHz ASSR correlated positively with the post-CI T-level. Those with ASSRs at all frequencies had significantly lower CAP scores at the postoperative 1year. CI should not be delayed when marginal residual hearing is evident in ASSR.