• Title/Summary/Keyword: respiratory motion

Search Result 170, Processing Time 0.04 seconds

Measurement of Dust Concentration in a Naturally Ventilated Broiler House according to Season and Worker's Access (윈치커튼식 계사의 시기 및 작업자 출입에 따른 분진 발생 농도 측정 연구)

  • Jo, Ye-seul;Kwon, Kyeong-seok;Lee, In-bok;Ha, Tae-hwan;Park, Se-jun;Kim, Rack-woo;Yeo, Uk-hyeon;Lee, Sang-yeon;Lee, Seung-no
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.6
    • /
    • pp.35-46
    • /
    • 2015
  • Improvement in domestic poultry production has a positive effect on the export competitiveness of the poultry industry. However, overproduction and enlargement of facilities to assure a supply increase a stocking density which make a poor environment in the broiler house. In particular, an intensive rearing environment is vulnerable to dust control that causes respiratory diseases, such as asthma, bronchitis, etc., to farmers and broilers. However, monitoring data and research for environment control are not adequate, and there are no air quality regulations in broiler houses in Korea. In this study, TSP, PM10, inhalable dust and respirable dust concentration were monitored according to season, age of broiler and broiler's activities. Air quality assessment was also performed in accordance with the threshold limit value by Donham et al. (2000). The TSP concentrations were 77.5 %, 219.7 % higher and PM10 concentrations were 121.2 %, 303.8 % higher when change of season and winter respectively than summer. There were significantly different concentrations according to season and age of broiler. Inhalable and respirable dust concentration were also clearly different according to the season and age of broiler. A high dust concentration was observed, specifically exceeding the threshold limit by 119 % in the winter. In the case of the broiler's motion was activity according to worker's access into the broiler house, concentration level was 769.6 % higher than broiler's motion was stable and exceeded the threshold limit. These results suggest that the worker should put on protective equipment to protect there's respiratory health in the broiler house.

Software Architecture of a Wearable Device to Measure User's Vital Signal Depending on the Behavior Recognition (행동 인지에 따라 사용자 생체 신호를 측정하는 웨어러블 디바이스 소프트웨어 구조)

  • Choi, Dong-jin;Kang, Soon-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.3
    • /
    • pp.347-358
    • /
    • 2016
  • The paper presents a software architecture for a wearable device to measure vital signs with the real-time user's behavior recognition. Taking vital signs with a wearable device help user measuring health state related to their behavior because a wearable device is worn in daily life. Especially, when the user is running or sleeping, oxygen saturation and heart rate are used to diagnose a respiratory problems. However, in measuring vital signs, continuosly measuring like the conventional method is not reasonable because motion artifact could decrease the accuracy of vital signs. And in order to fix the distortion, a complex algorithm is not appropriate because of the limited resources of the wearable device. In this paper, we proposed the software architecture for wearable device using a simple filter and the acceleration sensor to recognize the user's behavior and measure accurate vital signs with the behavior state.

Development of Energy Harvesting Technologies Platform for Self-Power Rechargeable Pacemaker Medical Device. (자가발전 심장박동기를 위한 에너지 수확 플랫폼 개발)

  • Park, Hyun-Moon;Lee, Jung-Chul;Kim, Byunng-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.619-626
    • /
    • 2019
  • The advances of semiconductor and circuitry technology dovetailed with nano processing techniques have further enhanced micro-miniaturization, sensitivity, longevity and reliability in MID(Medical Implant Device). Nevertheless, one of the remaining challenges is whether power can sufficiently and continuously be supplied for the operation of the MID. Self-powered MID that harvest biomechanical energy from human motion, respiratory and muscle movement are part of a paradigm shift. In this paper, we developed a rechargeable pacemaker through self-power generation with the triboelectric nanogenerator. We demonstrate a fully implanted pacemaker based on an implantable triboelectric nanogenerator, which act as a storage as well as active movement on a large-animal(dog) scale. The self-power pacemaker harvested from animal motion is 2.47V, which is higher than the required pacemaker device sensing voltage(1.35V).

Evaluation of the Positional Uncertainty of a Liver Tumor using 4-Dimensional Computed Tomography and Gated Orthogonal Kilovolt Setup Images (사차원전산화단층촬영과 호흡연동 직각 Kilovolt 준비 영상을 이용한 간 종양의 움직임 분석)

  • Ju, Sang-Gyu;Hong, Chae-Seon;Park, Hee-Chul;Ahn, Jong-Ho;Shin, Eun-Hyuk;Shin, Jung-Suk;Kim, Jin-Sung;Han, Young-Yih;Lim, Do-Hoon;Choi, Doo-Ho
    • Radiation Oncology Journal
    • /
    • v.28 no.3
    • /
    • pp.155-165
    • /
    • 2010
  • Purpose: In order to evaluate the positional uncertainty of internal organs during radiation therapy for treatment of liver cancer, we measured differences in inter- and intra-fractional variation of the tumor position and tidal amplitude using 4-dimentional computed radiograph (DCT) images and gated orthogonal setup kilovolt (KV) images taken on every treatment using the on board imaging (OBI) and real time position management (RPM) system. Materials and Methods: Twenty consecutive patients who underwent 3-dimensional (3D) conformal radiation therapy for treatment of liver cancer participated in this study. All patients received a 4DCT simulation with an RT16 scanner and an RPM system. Lipiodol, which was updated near the target volume after transarterial chemoembolization or diaphragm was chosen as a surrogate for the evaluation of the position difference of internal organs. Two reference orthogonal (anterior and lateral) digital reconstructed radiograph (DRR) images were generated using CT image sets of 0% and 50% into the respiratory phases. The maximum tidal amplitude of the surrogate was measured from 3D conformal treatment planning. After setting the patient up with laser markings on the skin, orthogonal gated setup images at 50% into the respiratory phase were acquired at each treatment session with OBI and registered on reference DRR images by setting each beam center. Online inter-fractional variation was determined with the surrogate. After adjusting the patient setup error, orthogonal setup images at 0% and 50% into the respiratory phases were obtained and tidal amplitude of the surrogate was measured. Measured tidal amplitude was compared with data from 4DCT. For evaluation of intra-fractional variation, an orthogonal gated setup image at 50% into the respiratory phase was promptly acquired after treatment and compared with the same image taken just before treatment. In addition, a statistical analysis for the quantitative evaluation was performed. Results: Medians of inter-fractional variation for twenty patients were 0.00 cm (range, -0.50 to 0.90 cm), 0.00 cm (range, -2.40 to 1.60 cm), and 0.00 cm (range, -1.10 to 0.50 cm) in the X (transaxial), Y (superior-inferior), and Z (anterior-posterior) directions, respectively. Significant inter-fractional variations over 0.5 cm were observed in four patients. Min addition, the median tidal amplitude differences between 4DCTs and the gated orthogonal setup images were -0.05 cm (range, -0.83 to 0.60 cm), -0.15 cm (range, -2.58 to 1.18 cm), and -0.02 cm (range, -1.37 to 0.59 cm) in the X, Y, and Z directions, respectively. Large differences of over 1 cm were detected in 3 patients in the Y direction, while differences of more than 0.5 but less than 1 cm were observed in 5 patients in Y and Z directions. Median intra-fractional variation was 0.00 cm (range, -0.30 to 0.40 cm), -0.03 cm (range, -1.14 to 0.50 cm), 0.05 cm (range, -0.30 to 0.50 cm) in the X, Y, and Z directions, respectively. Significant intra-fractional variation of over 1 cm was observed in 2 patients in Y direction. Conclusion: Gated setup images provided a clear image quality for the detection of organ motion without a motion artifact. Significant intra- and inter-fractional variation and tidal amplitude differences between 4DCT and gated setup images were detected in some patients during the radiation treatment period, and therefore, should be considered when setting up the target margin. Monitoring of positional uncertainty and its adaptive feedback system can enhance the accuracy of treatments.

A Remote Rehabilitation System using Kinect Stereo Camera (키넥트 스테레오 영상을 이용한 원격 재활 시스템)

  • Kim, Kyungah;Chung, Wan-Young;Kim, Jong-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.196-201
    • /
    • 2016
  • Rehabilitation exercises are the treatments designed to help patients who are in the process of recovery from injury or illness to restore their body functions back to the original status. However, many patients suffering from chronic diseases have found difficulties visiting hospitals for the rehabilitation program due to lack of transportation, cost of the program, their own busy schedules, etc. Also, the program usually contains a few medical check-ups which can cause patients to feel uncomfortable. In this paper, we develop a remote rehabilitation system with bio-signals by a stereo camera. A Kinect stereo camera manufactured by Microsoft corporation was used to recognize the body movement of a patient by using its infrared(IR) camera. Also, we detect the chest area of a user from the skeleton data and process to gain respiratory status. ROI coordinates are created on a user's face to detect photoplethysmography(PPG) signals to calculate heart rate values from its color sensor. Finally, rehabilitation exercises and bio-signal detecting features are combined into a Windows application for the cost effective and high performance remote rehabilitation system.

Evaluation of Dose Distributions calculated with ITV Measurement Plan Data and PTV Measurement plan Data under the condition of Respiratory Motion during 3D for ABD Cancer (내부표적체적 기반의 치료계획과 호흡연동 기법을 적용한 치료계획과의 선량비교 분석)

  • Park, Ho-Chun;Han, Jae-Bok;Song, Jong-Nam;Choi, Nam-Gil
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2014.11a
    • /
    • pp.227-228
    • /
    • 2014
  • 방사선치료의 발전으로 3차원치료보다 진보된 호흡연동방사선치료가 시행되어지고 있다. 호흡의 규칙성과 환자의 위치 재현성이 중요한 치료적응 인자이며, 호흡연동 방사선치료의 효율을 높일 수 있는 지표이다. 국가암통계상 고령의 암환자가 증가하며, 수술, 화학요법을 병행하는 암 치료법이 널리 이용이 되고 있다. 고식적인 치료를 요하는 고령의 복부 암 환자분들에 호흡연동 방사선치료법을 사용하는데 에는 호흡의 불규칙성과 체위의 재현성의 문제점으로 인한 치료 효율의 저하를 가져온다. 본 연구에서는 호흡에 의한 종양 움직임이 있는 방사선 치료에서 내부표적체적 기반의 치료계획과 호흡연동 기법을 적용한 치료계획과의 선량비교 분석하였다. 2가지 치료법 모두 정상조직 보호선량에 부합한 것으로 나타났으며 치료체적은 처방선량의 95%이상 포함된 선량분포로 적합하였다. ITV 설정을 통한 3D Plan은 고식적 치료을 목적으로 하는 고령의 환자, 체위 및 호흡의 불안정성 환자에게 처방선량의 95% 이상의 4D Plan의 치료법 보다 짧은 시간에 치료함으로써 치료효율을 높일 수 있을 거라 사료된다. 다만 정상조직보호선량(NTCP)에 부합하는지에 대한 평가가 전제되어야 한다.

  • PDF

Utility of Magnetic Resonance Imaging in the Diagnosis of Lung Adenocarcinoma with Extensive Necrosis: a Case Report

  • Choi, Sang Lim;Cha, Min Jae;Choi, Hye Won;Park, Byung-Joon;Kim, Mi Kyung;Kim, Jae Yeol
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.4
    • /
    • pp.254-259
    • /
    • 2018
  • Application of magnetic resonance imaging (MRI) for assessment of pulmonary disease has been limited, due to susceptibility to cardiac pulsation, respiratory motion, and inhomogeneity of the magnetic field of the lung. With technical advances of MRI and unmet clinical needs for more accurate diagnosis and assessment of the disease, however, the use of MRI for evaluation of the lung has broadened. Herein, we present a case of pneumonic-type lung adenocarcinoma in a patient with history of anaphylactic shock to iodinated contrast medium, in which MRI played a critical role for targeted lung biopsy and cancer staging. Through this paper, we would like to report potential value of MRI in assessment of lung cancer.

Dosimetric Evaluation of Amplitude-based Respiratory Gating for Delivery of Volumetric Modulated Arc Therapy (진폭 기반 호흡연동 체적변조회전방사선치료의 선량학적 평가)

  • Lee, Chang Yeol;Kim, Woo Chul;Kim, Hun Jeong;Park, Jeong Hoon;Min, Chul Kee;Shin, Dong Oh;Choi, Sang Hyoun;Park, Seungwoo;Huh, Hyun Do
    • Progress in Medical Physics
    • /
    • v.26 no.3
    • /
    • pp.127-136
    • /
    • 2015
  • The purpose of this study is to perform a dosimetric evaluation of amplitude-based respiratory gating for the delivery of volumetric modulated arc therapy (VMAT). We selected two types of breathing patterns, subjectively among patients with respiratory-gated treatment log files. For patients that showed consistent breathing patterns (CBP) relative to the 4D CT respiration patterns, the variability of the breath-holding position during treatment was observed within the thresholds. However, patients with inconsistent breathing patterns (IBP) show differences relative to those with CBP. The relative isodose distribution was evaluated using an EBT3 film by comparing gated delivery to static delivery, and an absolute dose measurement was performed with a $0.6cm^3$ Farmer-type ion chamber. The passing rate percentages under the 3%/3 mm gamma analysis for Patients 1, 2 and 3 were respectively 93.18%, 91.16%, and 95.46% for CBP, and 66.77%, 48.79%, and 40.36% for IBP. Under the more stringent criteria of 2%/2 mm, passing rates for Patients 1, 2 and 3 were respectively 73.05%, 67.14%, and 86.85% for CBP, and 46.53%, 32.73%, and 36.51% for IBP. The ion chamber measurements were within 3.5%, on average, of those calculated by the TPS and within 2.0%, on average, when compared to the static-point dose measurements for all cases of CBP. Inconsistent breathing patterns between 4D CT simulation and treatment may cause considerable dosimetric differences. Therefore, patient training is important to maintain consistent breathing amplitude during CT scan acquisition and treatment delivery.

A study to 3D dose measurement and evaluation for Respiratory Motion in Lung Cancer Stereotactic Body Radiotherapy Treatment (폐암의 정위적체부방사선치료시 호흡 움직임에 따른 3D 선량 측정평가)

  • Choi, Byeong-Geol;Choi, Chang-Heon;Yun, Il-Gyu;Yang, Jin-Seong;Lee, Dong-Myeong;Park, Ju-Mi
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.59-67
    • /
    • 2014
  • Purpose : This study aims to evaluate 3D dosimetric impact for MIP image and each phase image in stereotactic body radiotherapy (SBRT) for lung cancer using volumetric modulated arc therapy (VMAT). Materials and Methods : For each of 5 patients with non-small-cell pulmonary tumors, a respiration-correlated four-dimensional computed tomography (4DCT) study was performed. We obtain ten 3D CT images corresponding to phases of a breathing cycle. Treatment plans were generated using MIP CT image and each phases 3D CT. We performed the dose verification of the TPS with use of the Ion chamber and COMPASS. The dose distribution that were 3D reconstructed using MIP CT image compared with dose distribution on the corresponding phase of the 4D CT data. Results : Gamma evaluation was performed to evaluate the accuracy of dose delivery for MIP CT data and 4D CT data of 5 patients. The average percentage of points passing the gamma criteria of 2 mm/2% about 99%. The average Homogeneity Index difference between MIP and each 3D data of patient dose was 0.03~0.04. The average difference between PTV maximum dose was 3.30 cGy, The average different Spinal Coad dose was 3.30 cGy, The average of difference with $V_{20}$, $V_{10}$, $V_5$ of Lung was -0.04%~2.32%. The average Homogeneity Index difference between MIP and each phase 3d data of all patient was -0.03~0.03. The average PTV maximum dose difference was minimum for 10% phase and maximum for 70% phase. The average Spain cord maximum dose difference was minimum for 0% phase and maximum for 50% phase. The average difference of $V_{20}$, $V_{10}$, $V_5$ of Lung show bo certain trend. Conclusion : There is no tendency of dose difference between MIP with 3D CT data of each phase. But there are appreciable difference for specific phase. It is need to study about patient group which has similar tumor location and breathing motion. Then we compare with dose distribution for each phase 3D image data or MIP image data. we will determine appropriate image data for treatment plan.

Evaluation of usefulness of the Gated Cone-beam CT in Respiratory Gated SBRT (호흡동조 정위체부방사선치료에서 Gated Cone-beam CT의 유용성 평가)

  • Hong sung yun;Lee chung hwan;Park je wan;Song heung kwon;Yoon in ha
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.34
    • /
    • pp.61-72
    • /
    • 2022
  • Purpose: Conventional CBCT(Cone-beam Computed-tomography) caused an error in the target volume due to organ movement in the area affected by respiratory movement. The purpose of this paper is to evaluate the usefulness of accuracy and time spent using the Gated CBCT function, which reduces errors when performing RGRT(respiratory gated radiation therapy), and to examine the appropriateness of phase. Materials and methods: To evaluate the usefulness of Gated CBCT, the QUASARTM respiratory motion phantom was used in the Truebeam STxTM. Using lead marker inserts, Gated CBCT was scaned 5 times for every 20~80% phase, 30~70% phase, and 40~60% phase to measure the blurring length of the lead marker, and the distance the lead marker moves from the top phase to the end of the phase was measured 5 times. Using Cedar Solid Tumor Inserts, 4DCT was scanned for every phase, 20-80%, 30-70%, and 40-60%, and the target volume was contoured and the length was measured five times in the axial direction (S-I direction). Result: In Gated CBCT scaned using lead marker inserts, the axial moving distance of the lead marker on average was measured to be 4.46cm in the full phase, 3.11cm in the 20-80% phase, 1.94cm in the 30-70% phase, 0.90cm in the 40-60% phase. In Fluoroscopy, the axial moving distance of the lead marker on average was 4.38cm and the distance on average from the top phase to the beam off phase was 3.342cm in the 20-80% phase, 3.342cm in the 30-70% phase, and 0.84cm in the 40-60% phase. Comparing the results, the difference in the full phase was 0.08cm, the 20~80% phase was 0.23cm, the 30~70% phase was 0.10cm, and the 40~60% phase was 0.07cm. The axial lengths of ITV(Internal Target Volume) and PTV(Planning Target Volume) contoured by 4DCT taken using cedar solid tumor inserts were measured to be 6.40cm and 7.40cm in the full phase, 4.96cm and 5.96cm in the 20~80% phase, 4.42cm and 5.42cm in the 30~70% phase, and 2.95cm and 3.95cm in the 40~60% phase. In the Gated CBCT, the axial lengths on average was measured to be 6.35 cm in the full phase, 5.25 cm in the 20-80% phase, 4.04 cm in the 30-70% phase, and 3.08 cm in the 40-60% phase. Comparing the results, it was confirmed that the error was within ±8.5% of ITV Conclusion: Conventional CBCT had a problem that errors occurred due to organ movement in areas affected by respiratory movement, but through this study, obtained an image similar to the target volume of the setting phase using Gated CBCT and verified its usefulness. However, as the setting phase decreases, the scan time was increases. Therefore, considering the scan time and the error in setting phase, It is recommended to apply it to patients with respiratory coordinated stereotactic radiation therapy using a wide phase of 30-70% or more.