• Title/Summary/Keyword: resource status sensing

Search Result 8, Processing Time 0.02 seconds

Outdoor Applications of Hyperspectral Imaging Technology for Monitoring Agricultural Crops: A Review

  • Ahmed, Mohammad Raju;Yasmin, Jannat;Mo, Changyeun;Lee, Hoonsoo;Kim, Moon S.;Hong, Soon-Jung;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.396-407
    • /
    • 2016
  • Background: Although hyperspectral imaging was originally introduced for military, remote sensing, and astrophysics applications, the use of analytical hyperspectral imaging techniques has been expanded to include monitoring of agricultural crops and commodities due to the broad range and highly specific and sensitive spectral information that can be acquired. Combining hyperspectral imaging with remote sensing expands the range of targets that can be analyzed. Results: Hyperspectral imaging technology can rapidly provide data suitable for monitoring a wide range of plant conditions such as plant stress, nitrogen status, infections, maturity index, and weed discrimination very rapidly, and its use in remote sensing allows for fast spatial coverage. Conclusions: This paper reviews current research on and potential applications of hyperspectral imaging and remote sensing for outdoor field monitoring of agricultural crops. The instrumentation and the fundamental concepts and approaches of hyperspectral imaging and remote sensing for agriculture are presented, along with more recent developments in agricultural monitoring applications. Also discussed are the challenges and limitations of outdoor applications of hyperspectral imaging technology such as illumination conditions and variations due to leaf and plant orientation.

MAC Protocol based on Resource Status-Sensing Scheme for Integrated Voice/Data Services (음성/데이타 통합 서비스를 위한 자원 상태 감지 기법 기반 MAC프로토콜)

  • Lim, In-Taek
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.2
    • /
    • pp.141-155
    • /
    • 2002
  • A medium access control protocol is proposed for integrated voice and data services in the packet CDMA network with a small coverage. Uplink channels are composed of time slots and multiple spreading codes for each slot. This protocol gives higher access priority to the delay-sensitive voice traffic than to the data traffic. During a talkspurt, voice terminals reserve a spreading code to transmit multiple voice packets. On the other hand, whenever generating a data packet, data terminals transmit a packet based on the status information of spreading codes in the current slot, which is received from base station. In this protocol, voice packet does not come into collision with data packet. Therefore, this protocol can increase the maximum number of voice terminals.

Spectrum- and Energy- Efficiency Analysis Under Sensing Delay Constraint for Cognitive Unmanned Aerial Vehicle Networks

  • Zhang, Jia;Wu, Jun;Chen, Zehao;Chen, Ze;Gan, Jipeng;He, Jiangtao;Wang, Bangyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1392-1413
    • /
    • 2022
  • In order to meet the rapid development of the unmanned aerial vehicle (UAV) communication needs, cooperative spectrum sensing (CSS) helps to identify unused spectrum for the primary users (PU). However, multi-UAV mode (MUM) requires the large communication resource in a cognitive UAV network, resulting in a severe decline of spectrum efficiency (SE) and energy efficiency (EE) and increase of energy consumption (EC). On this account, we extend the traditional 2D spectrum space to 3D spectrum space for the UAV network scenario and enable UAVs to proceed with spectrum sensing behaviors in this paper, and propose a novel multi-slot mode (MSM), in which the sensing slot is divided into multiple mini-slots within a UAV. Then, the CSS process is developed into a composite hypothesis testing problem. Furthermore, to improve SE and EE and reduce EC, we use the sequential detection to make a global decision about the PU channel status. Based on this, we also consider a truncation scenario of the sequential detection under the sensing delay constraint, and further derive a closed-form performance expression, in terms of the CSS performance and cooperative efficiency. At last, the simulation results verify that the performance and cooperative efficiency of MSM outperforms that of the traditional MUM in a low EC.

Study on Establishment of a Wind Map of the Korean Peninsula (I. Establishment of a Synoptic Wind Map Using Remote-Sensing Data) (한반도 바람지도 구축에 관한 연구 (I. 원격탐사자료에 의한 종관 바람지도 구축))

  • Kim Hyungoo;Choi Jaeou;Lee Hwawoon;Jung Woosik
    • New & Renewable Energy
    • /
    • v.1 no.1 s.1
    • /
    • pp.44-53
    • /
    • 2005
  • To understand general status of the national wind environment and to distinguish potential areas to be developed as a largescale wind farm, a synoptic wind map of the Korean Peninsula is established by processing remote sensing data of the satellite, NASA QuikSCAT which Is deployed for the SeaWinds Project since 1999. According to the validation results obtained by comparing with the measurement data of marine buoys of KMA(Korea Meteorological Administration), the cross-correlation factor Is greatly Improved up to 0.87 by blending the sea-surface dat3 of QuikSCAT with NCEP/NCAR CDAS data. It is found from the established synoptic wind map that the wind speed in winter is prominent temporally and the South Sea shows high energy density up to the wind class 6 spatially. The reason is deduced that the northwest winds through the yellow Sea and the northeast winds through the East Sea derived by the low-pressure developed in Japan are accelerated passing through the Korea Channel and formed high wind energy region in the South Sea; the same trends are confirmed by the statistical analysis of meteorological observation data of KMA.

  • PDF

An Assessment of a Random Forest Classifier for a Crop Classification Using Airborne Hyperspectral Imagery

  • Jeon, Woohyun;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.1
    • /
    • pp.141-150
    • /
    • 2018
  • Crop type classification is essential for supporting agricultural decisions and resource monitoring. Remote sensing techniques, especially using hyperspectral imagery, have been effective in agricultural applications. Hyperspectral imagery acquires contiguous and narrow spectral bands in a wide range. However, large dimensionality results in unreliable estimates of classifiers and high computational burdens. Therefore, reducing the dimensionality of hyperspectral imagery is necessary. In this study, the Random Forest (RF) classifier was utilized for dimensionality reduction as well as classification purpose. RF is an ensemble-learning algorithm created based on the Classification and Regression Tree (CART), which has gained attention due to its high classification accuracy and fast processing speed. The RF performance for crop classification with airborne hyperspectral imagery was assessed. The study area was the cultivated area in Chogye-myeon, Habcheon-gun, Gyeongsangnam-do, South Korea, where the main crops are garlic, onion, and wheat. Parameter optimization was conducted to maximize the classification accuracy. Then, the dimensionality reduction was conducted based on RF variable importance. The result shows that using the selected bands presents an excellent classification accuracy without using whole datasets. Moreover, a majority of selected bands are concentrated on visible (VIS) region, especially region related to chlorophyll content. Therefore, it can be inferred that the phenological status after the mature stage influences red-edge spectral reflectance.

Design of IoT-based Energy Monitoring System for Residential Building (IoT 기반 주택형 건물 에너지 모니터링 시스템 설계)

  • Lee, Min-Goo;Jung, Kyung-Kwon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1223-1230
    • /
    • 2021
  • Recently, energy resource management is a major concern around the world. Energy management activities minimize environmental impacts of the energy production. This paper presents design and prototyping of a home electric energy monitoring system that provides residential consumers with real time information about their electricity use. The developed system is composed of an in-house sensing system and a server system. The in-home sensing system is a set of wireless smart plug which have an AC power socket, a relay to switch the socket ON/OFF, a CT sensor to sense current of load appliance and a Kmote. The Kmote is a wireless communication interface based on TinyOS. Each sensing node sends its detection signal to a home gateway via wireless link. The home gateway stores the received signals into a remote database. The server system is composed of a database server and a web server, which provides web-based monitoring system to residential consumers. We analyzed and presented energy consumption data from electrical appliances for 3 months in home. The experimental results show the promising possibilities to estimate the energy consumption patterns and the current status.

A Study on the Procedure for Applying Digital Twin to Disaster and Aging Management of Port Infrastructure (항만 인프라 재해와 노후화 관리를 위한 디지털 트윈 적용 절차에 관한 연구)

  • Hye-Jung Chang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.3
    • /
    • pp.138-151
    • /
    • 2023
  • Korea's port infrastructure is rapidly aging, with old port facilities with more than 30 years of public life expected to surge from about 23% in 2019 to 47% in 2029. Traditional, aging ports lose competitiveness in logistics processing, reducing development around the port and increasing human casualties due to the human resource-based maintenance of the facilities. Therefore, it is necessary to solve this problem by establishing systematic management technology based on a digital twin. This research aimed to present the specific implementation steps of a digital twin reflecting smart port technology through cases of port infrastructure disasters, aging status, and smart ports. The study analyzed the port infrastructure linkage system and created and mapped scenarios essential for digital twin implementation. Three-dimensional (3D) modeling and simulation data for disaster and aging management among existing port infrastructure systems were collected. A digital twin port was implemented with 3D modeling. It implements a port digital twin simulation that links data such as sensing data and image data acquired from the port infrastructure in real time. Implementing a digital twin port for port infrastructure disasters and aging management can secure predictive port infrastructure management and disaster safety

Analysis of Spectral Reflectance Characteristic Change during Growing Status of Rice Plants using Spectroradiometer (스펙트로레디오메터를 이용한 벼 생장시기의 분광반사 특성 변화 분석)

  • Jang, Se-Jin;Suh, Ae-Sook;Kim, Pan-Gi;Yun, Jin-Il
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.3 no.3
    • /
    • pp.12-19
    • /
    • 2000
  • Knowledge for reflectance characteristic of interesting targets will provide us with actual application of remote sensing on agriculture. In this study, we have measured and analyzed reflectivity characteristics based on growing status from transplanting time to harvesting time. Rice paddies transplant into 3 fields at 20, May, 1999. Measurement of reflectivity characteristics were carried out with a portable spectroradiometer for frequencies from 300nm to 1100nm during the time period from 11:00 AM to 01:00 PM of clear sky and calm a day. The measurements for a day repeated 3 times(also, 3 times to each measurement)for reliable values. In result, we found that averaged reflectivity of visible range has about 2.34% - 2.55% in blue region(400nm-498nm), about 5.05% - 6.01% in green region(500nm-598nm) and about 4.21% - 5.24% in red region(600nm-698nm). It must be noted that the more rice canopy grows, the more spectral reflectivity decreases in visible region. Also, we separated infrared region into two cases - One case is increasing region with 700nm-780nm, the other is fixed region with 800nm-1100nm. Averaged reflectivity of these regions has about 22.3% - 23.0% in increasing region, about 29.4% - 33.1% in fixed region. It must be noted that more rice canopy grows, the more spectral reflectivity also increases up to 23, Aug. in infrared region. After 23, Aug, the reflectivity has a tendency toward decrease.

  • PDF