• Title/Summary/Keyword: resonant sensor

Search Result 215, Processing Time 0.039 seconds

Quantitative Alpha Fetoprotein Detection with a Piezoelectric Microcantilever Mass Sensor (압전 마이크로캔틸레버 질량센서를 이용한 정량적 알파태아단백 검출)

  • Lee, Sangk-Yu;Cho, Jong-Yun;Lee, Yeol-Ho;Jeon, Sang-Min;Cha, Hyung-Joon;Moon, Wonk-Yu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.5
    • /
    • pp.487-493
    • /
    • 2011
  • Alpha fetoprotein(AFP), which is serological marker for hepatocellular carcinoma, was quantitatively measured by its normal concentration, 10 ng/ml, with a label-free piezoelectric microcantilever mass sensor. The principle of detection is based on changes in the resonant frequency of the piezoelectric microcantilever before and after target molecules are attached to it, and its resonant frequency is measured electrically using a conductance spectrum. The resonant frequency of the developed sensor is approximately 1.34 MHz and the mass sensitivity is approximately 175 Hz/pg. The sensor has high reliability as mass sensor by reducing the effect of surface stress on resonant frequency due to attached proteins. 'Dip and dry' technique was used to react the sensor with reagents for immobilizing AFP antibody on the sensor and detecting AFP antigen. The measured mass of the detected AFP antigen was 6.02 pg at the concentration of 10 ng/ml, and 10.67 pg at 50 ng/ml when the immunoreaction time was 10 min.

Electrochemical Determination of Glucose Concentration Contained in Salt Solution (소금용액에 포함된 글루코오스 농도의 전기화학적 측정)

  • 김영한
    • Journal of Korean Port Research
    • /
    • v.14 no.4
    • /
    • pp.475-479
    • /
    • 2000
  • A possibility of the implementation of a quartz crystal sensor to the determination of chemical oxygen demand is examined by checking the electrochemical behavior of the sensor in a glucose solution. Since the surface of a quartz crystal has to be oxidized, a relatively active metal is coated on the surface of a usual 9 MHz AT-cut crystal. The electrochemical behavior is investigated by measuring the changes of current, resonant frequency and resonant resistance while a constant potential is applied. The crystal is installed in a specially designed container, and a quartz crystal analyzer is utilized to measure the frequency and resistance simultaneously. The variations of the measurements are examined at different concentrations of glucose solution, and a proper relation between the concentrations of glucose solution, and a proper relation between the concentration and the measurements is analyzed. As a result, it is found that a linear relation between the concentration of less than 900 ppm and the peak current when a constant potential of -180 mV (SSCE) is applied. The relation can be utilized for the determination of glucose concentration in sea water, and considering a direct relation between gluose concentration and chemical oxygen demand tells a possibility of the measurement of chemical oxygen demand using quartz crystal oscillators.

  • PDF

Development of Real-time Heart Rate Measurement Device Using Wireless Pressure Sensor (무선 압력센서를 이용한 실시간 맥박수 측정기 개발)

  • Choi, Sang-Dong;Cho, Sung-Hwan;Joung, Yeun-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.5
    • /
    • pp.284-288
    • /
    • 2016
  • Among the various physiological information that could be obtained from human body, heartbeat rate is a commonly used vital sign in the clinical milieu. Photoplethysography (PPG) sensor is incorporated into many wearable healthcare devices because of its advantages such as simplicity of hardware structure and low-cost. However, healthcare device employing PPG sensor has been issued in susceptibility of light and motion artifact. In this paper, to develop the real-time heart rate measurement device that is less sensitive to the external noises, we have fabricated an ultra-small wireless LC resonant pressure sensor by MEMS process. After performance evaluation in linearity and repeatability of the MEMS pressure sensor, heartbeat waveform and rate on radial artery were obtained by using resonant frequency-pressure conversion method. The measured data using the proposed heartbeat rate measurement system was validated by comparing it with the data of an commercialized heart rate measurement device. Result of the proposed device was agreed well to that of the commercialized device. The obtained real time heartbeat wave and rate were displayed on personal mobile system by bluetooth communication.

Measurement of Crystal Formation in Supersaturated Solution

  • Kim, Byung-Chul;Kim, Young-Han
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1196-1200
    • /
    • 2003
  • The degree of supersaturation is an important measure for the operation of crystallization processes, because it is directly related to the control of crystal size distribution and shape. A conventional technique utilizing solution composition and temperature has a variety of problems caused from the measurement error and the handling of analyzing samples. A monitoring system of the supersaturation using a quartz crystal sensor is proposed here, and its performance is examined applying different manipulations of coolant temperature. The experimental outcome and photographic examination indicate that the measurements of resonant frequency and resistance of the sensor can be used for the prediction of the formation and growth of solid crystal from the crystallization process. The monitoring system eliminates the intrinsic error source of the conventional system to give the improved measurement and on-line application availability.

  • PDF

Trajectory of Resonant Displacement of Thickness Vibration Mode Piezoelectric Devices According to Diameter/Thickness Ratio (두께와 직경 비에 따른 두께진동모드 압전소자의 공진 변위 궤적)

  • Jeong, Yeong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.2
    • /
    • pp.105-109
    • /
    • 2012
  • In this study, thickness vibration mode piezoelectric devices for AE sensor application were simulated using ATILA FEM program, and then fabricated. Trajectory resonant displacement and electro mechanical coupling factors of the piezoelectric devices were investigated. The simulation results showed that excellent displacement and electro mechanical coupling factor was obtained when the ratio of diameter/thickness($\Phi/T$) was 0.75. The piezoelectric device of $\Phi/T$=0.75 exhibited the optimum values of fr= 183 kHz, displacement= $4.44{\times}10^{-7}[m]$, $k_{33}$= 0.69, which were suitable for the application of AE sensor piezoelectric device.

A study on the technology applying the acoustic wave measurement to diagnosing particles in GIS [II] (GIS 이물진단을 위한 초음파 측정 적용기술연구(II))

  • Choi, J.G.;Kim, I.K.;Kim, M.G.;Kim, I.S.;Kim, K.H.;Yoon, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1646-1648
    • /
    • 2001
  • This paper described the outputs of acoustic sensors due to the vibration of particles in the mock up GIS. We used the two type of acoustic sensors which had 150kHz resonant frequency and 60kHz resonant frequency respectively. In the experiment of the mock up GIS, we paid attention to the magnitude and attenuation of sensor outputs due to particles. In this results the output of each sensor in frequency characteristic depended on the material of GIS tank and the output of sensor in magnitude characteristics depended on the size of particles and dropping height.

  • PDF

Factors Affecting Acoustic Responses of Egg Shell (난각의 음향반응에 영향을 주는 인자)

  • 조한근;최완규
    • Journal of Biosystems Engineering
    • /
    • v.22 no.1
    • /
    • pp.41-48
    • /
    • 1997
  • A nondestructive quality inspection technique using acoustic impulse response method was studied to investigate the feasibility of egg shell inspection. An experimental system was built to generate impact force, to measure the response signal and to analyze the frequency spectrum. This system includes an impulse generating unit, an egg holding seat, a microphone with preamplifier, and a digital oscilloscope connected to Personal Computer by RS-232C interface. The factors such as impulse generating method, egg holding method, and sensor location were evaluated by analyzing the power spectrum density of the measured signal. The results obtained are summarized as follows : 1. From the sampled eggs, the proper conditions for detecting damaged eggs were found as followings; ceramic for the impact ball material, rubber for egg seat material, 20 degrees for an impact angle of pendulum, 10mm for the distance between egg and sensor, the sharp side for impacting part, and 180 degrees for the location of sensor. 2. Examination of the Fourier transformed analysis in beth normal and damaged eggs revealed that those factors such as the resonant frequency, a number of peak frequencies and the magnitude of power spectrum were important to detect damaged eggs.

  • PDF

Wave Simulation Technique for Large-scale Optical Sensor Designs (거대 스케일 광학 센서 설계를 위한 파동 시뮬레이션(Wave Simulation) 기법 연구)

  • Yong-Hoon Lee;Tae Yoon Kwon;Muhan Choi
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.62-65
    • /
    • 2023
  • The wave mode calculation of a large-scale optical system in comparison to the working wavelength is practically impossible because the computational cost increases exponentially. In this paper, we propose a method that can obtain the optical mode in a large-scale optical system. The method carries out simulations by dividing the calculation area into blocks and moving along the light axis along which the light propagates. By applying this method to the calculation of resonant modes in a ring-type optical resonator, which is mainly used for ring laser optical gyro sensors, the efficiency of the proposed method was verified.

Corrosion of Quartz Crystal Sensors in Sea Water (항만센서용 수정진동자의 해수에 의한 부식)

  • ;;;A. Egawa;H. Muramatsu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1998.10a
    • /
    • pp.183-188
    • /
    • 1998
  • A quartz crystal analyzer is utilized to monitor the cmsion process of an aluminum surface of a quartz crystal by sea water. A quartz crystal having 2000${\AA}$ of aluminum layer is installed in a spedally designed cell and is in contact with an electrolyte solution. While a constant potential is applied to the cell, the resonant frequency and resonant resistance are simultaneously measured using the quartz crystal analyzer. In addition, surface topographs are taken with an atomic force microscope(AFM) and the element analysis of the surface is conducted using an energy dispersive X-ray spectrornetedEDX). The simultaneous measurement of resonant frequency and resonant resistance during the corrosion process explains the change of surface structure caused by the corrosion. The variation of resonant frequency addresses the amount surface metal dissolution. As a conclusion, it is found that a simple measurement using the quartz crystal analyzer can replace the complex monitoring employing large equipments in the investigation of a corrosion process of metal surface.

  • PDF