• Title/Summary/Keyword: resonant sensor

Search Result 215, Processing Time 0.03 seconds

Polyimide Film-coated Side-polished Optical Fiber Humidity Sensor (폴리이미드가 코팅된 측면 연마 광섬유를 이용한 습도 센서)

  • Kwang Taek Kim;Jae Chang Yang
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.51-54
    • /
    • 2023
  • We investigated a humidity sensor based on a polyimide-coated side-polished optical fiber. The polyimide film absorbed moisture, causing the resonant wavelength of the sensor to shift to a longer wavelength owing to the changes in the optical properties of the film. The experimental results showed that the resonant wavelength of the device shifted by 17-18 nm when relative humidity changed from 30% to 90%.

design and Resonant Characteristics Analysis of a Vibrating Angular Rate Senser of Microstructure (진동형 미세구조 각속도 센서의 공진 특성 해석 및 설계)

  • 홍윤식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.156-160
    • /
    • 1996
  • A vibrating angular rate sensor with tuning fork type resonator of microstructure (940*820 .mu. m$^{2}$) was designed and will be fabricated by polysilicon surface micromaching. The angular rate sensor is driven in a lateral direction by electrostatic force of comb drive electrodes, and vertical vibrations of the sensor, thich is detected capacitively, are produced by Coriolis forces due to an external angular rate. Mechanical Q factors and a difference between the frequencies of the two resonant modes, the driving mode and detecting mode, play a great role in increasing the sensitivity of the sensor. To be a highly sensitive sensor, it was designed to have as small frequency discrepancy of the two resonant modes as possible. Finite element method was used for the modal analysis. Several design parameters were selected and their contributions to the modal frequencies were investigated. A method was presented for tuning the detecting mode frequency by DC bias on the drive electrodes.

  • PDF

Frequency and Amplitude Control of Micro Resonant Sensors (마이크로 공진형 센서의 주파수 및 진폭 제어)

  • Park, Sung-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.3
    • /
    • pp.258-264
    • /
    • 2009
  • This paper presents two control algorithms for the frequency and amplitude of the resonator of a micro sensor. One algorithm excites the resonator at its a priori unknown resonant frequency, and the other algorithm alters the resonator dynamics to place the resonant frequency at a fixed frequency, chosen by the designer. Both algorithms maintain a specified amplitude of oscillations. The control system behavior is analyzed using an averaging method, and a quantitative criterion is provided for the selecting the control gain to achieve stability. Tracking and estimation accuracy of the natural frequency under the presence of measurement noise is also analyzed. The proposed control algorithms are applied to the MEMS dual-mass gyroscope without mechanical connecting beam between two proof-masses. Simulation results show the effectiveness of the proposed control algorithms which guarantee the proof-masses of the gyroscope to move in opposite directions with the same resonant frequency and oscillation amplitude.

Development of Inductive and Capacitive Type Intraocular Pressure (IOP) Sensor to Improve Sensitivity and Minimize Size (민감도 향상과 센서 소형화를 위한 자기 및 용량형 안압센서의 개발)

  • Jang, Cheol In;Shin, Kyeong-Sik;Yun, Kwang-Seok;Kim, Yong Woo;Kang, Ji Yoon;Lee, Soo Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.409-415
    • /
    • 2014
  • We had presented an inductive type intraocular pressure sensor (L-sensor) in previous work. The distance between a micro coil and a ferrite on the membrane was modulated by pressure, and as a result the inductance and resonant frequency were changed. However, L-sensor has some problems to implant in eyes. First problem is low sensitivity. When L-sensor was implanted in rabbit's eyes, resonant frequency of L-sensor was very hard to detect. Second problem is biocompatibility. Size of L-sensor is $6{\times}7{\times}1.2mm$. When L-sensor was implanted in the eyes, it caused the inflammation. Therefore, this study suggests an inductive and capacitive type IOP sensor (LCsensor). The sensitivity of the LC-sensor 27.3 kHz/mmHg under 60mmHg. It is much larger than 14 kHz/mmHg of the L-sensor. And the size of LC-sensor is 47% smaller than L-sensor. After 2 weeks from the implantation of LC-sensor into rabbit eyes, we measured the changes of resonant frequency of LC-sensor according to increased IOP by Balanced Salt Solution (BSS) injection. As a result, the sensitivity of LC-sensor in in vivo test is 25 kHz/mmHg. That is similar to the sensitivity of in vitro test.

Fabrication and Characteristic of AE sensor using the Lead-free NKN Ceramics (무연 NKN 세라믹스를 이용한 AE 센서 제작 및 특성)

  • Lee, Kab-Soo;Yoo, Ju-Hyun;Hong, Jae-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.39-40
    • /
    • 2006
  • AE sensor using lead-free ceramics should be developed for prohibiting environment protection. In this study, Langevin type AE sensor was manufactured as air backing structure. Here, the piezoelectic element was used as PZT(EC-65) and NKN, respectively. The resonant frequency of AE sensor using PZT was 143 kHz and the resonant frequency of AE sensor using NKN was 178 kHz. The waveform of AE sensor using NKN was responded more sensitively than that of AE sensor using PZT.

  • PDF

Development of Implantable Blood Pressure Sensor Using Quartz Wafer Direct Bonding and Ultrafast Laser Cutting (Quatrz 웨이퍼의 직접접합과 극초단 레이저 가공을 이용한 체내 이식형 혈압센서 개발)

  • Kim, Sung-Il;Kim, Eung-Bo;So, Sang-kyun;Choi, Jiyeon;Joung, Yeun-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.5
    • /
    • pp.168-177
    • /
    • 2016
  • In this paper we present an implantable pressure sensor to measure real-time blood pressure by monitoring mechanical movement of artery. Sensor is composed of inductors (L) and capacitors (C) which are formed by microfabrication and direct bonding on two biocompatible substrates (quartz). When electrical potential is applied to the sensor, the inductors and capacitors generates a LC resonance circuit and produce characteristic resonant frequencies. Real-time variation of the resonant frequency is monitored by an external measurement system using inductive coupling. Structural and electrical simulation was performed by Computer Aided Engineering (CAE) programs, ANSYS and HFSS, to optimize geometry of sensor. Ultrafast laser (femto-second) cutting and MEMS process were executed as sensor fabrication methods with consideration of brittleness of the substrate and small radial artery size. After whole fabrication processes, we got sensors of $3mm{\times}15mm{\times}0.5mm$. Resonant frequency of the sensor was around 90 MHz at atmosphere (760 mmHg), and the sensor has good linearity without any hysteresis. Longterm (5 years) stability of the sensor was verified by thermal acceleration testing with Arrhenius model. Moreover, in-vitro cytotoxicity test was done to show biocompatiblity of the sensor and validation of real-time blood pressure measurement was verified with animal test by implant of the sensor. By integration with development of external interrogation system, the proposed sensor system will be a promising method to measure real-time blood pressure.

Measurement of Crystal Formation Using a Quartz Crystal Sensor

  • Joung, Ok-Jin;Kim, Young-Han
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1659-1661
    • /
    • 2004
  • Measurement of supersaturation is important in crystallization processes, because it is one of key factors to control crystal size distribution and shape determining product quality. A monitoring system of the supersaturation using a quartz crystal sensor is applied to the supersaturation measurement. From the variation of resonant frequency, the beginning of the formation of salt crystal on the sensor surface is detected while the sensor is directly cooled down. The degree of supersaturation is computed from the solubility difference at the temperatures of the salt solution and the sensor. The performance of the propsed system of the supersaturation measurement is examined by applying the system to the crystallization of three different salt solutions. The experimental outcome compared with eye observation result and photographic analysis indicates that the proposed system is effective and useful to determine the supersaturation in the crystallization process. In addition, the microscopic monitoring of the initial stage crystallization is available with the sensor system.

  • PDF

A Study on Development of One-channel Gas Sensor Using Polymeric Sensitive LB Films (고분자 감웅성 LB막을 이용한 One-channel 가스센서의 개발연구)

  • Kang, H.W.;Kim, J.M.;Kwon, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.261-263
    • /
    • 1996
  • The study on the development of one-channel gas sensor using the quartz crystal analyzer were attempted. The adsorption and desorption behavior of organic gases were investigated using the resonant frequency and resistance method of quartz crystal. The sensitive materials were deposited on the quartz crystal analyzer(QCA) by using Langmuir-Blodgett method. To investigate the response characteristics of organic vapours and response mechanism, resonant frequency-resonant resistance (F-R) diagram was used. In our experimental results, the response mechanism between sensitive LB film and organic vapours was obtained using F-R diagram. And the position of each organic vapour were different as to the kind and injection amount. Thus F-R diagram can be applied to one-channel gas sensor using the QCA and useful to analyze the response mechanism between organic vspours and sensitive LB films.

  • PDF

Antenna sensor skin for fatigue crack detection and monitoring

  • Deshmukh, Srikar;Xu, Xiang;Mohammad, Irshad;Huang, Haiying
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.93-105
    • /
    • 2011
  • This paper presents a flexible low-profile antenna sensor for fatigue crack detection and monitoring. The sensor was inspired by the sense of pain in bio-systems as a protection mechanism. Because the antenna sensor does not need wiring for power supply or data transmission, it is an ideal candidate as sensing elements for the implementation of engineering sensor skins with a dense sensor distribution. Based on the principle of microstrip patch antenna, the antenna sensor is essentially an electromagnetic cavity that radiates at certain resonant frequencies. By implementing a metallic structure as the ground plane of the antenna sensor, crack development in the metallic structure due to fatigue loading can be detected from the resonant frequency shift of the antenna sensor. A monostatic microwave radar system was developed to interrogate the antenna sensor remotely. Fabrication and characterization of the antenna sensor for crack monitoring as well as the implementation of the remote interrogation system are presented.

Design and Characteristics of AE Sensor for Detection of Metallic particle in GIS (GIS 내의 금속이물 탐지용 AE 센서의 설계와 특성)

  • 홍재일;정영호;류주현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.6
    • /
    • pp.502-508
    • /
    • 2000
  • In order to detect the partial discharge with the metallic particle in GIS the AE(Acoustic Emission) sensor was designed and simulated by ANSYS 5.5 and manufactured as the coupled vibration mode. The measured resonant frequency and the maximum sensitivity frequency of three coupled AE sensors were as follows ; 147.88 kHz in 8.1mm $\Phi$$\times$8.1mm 128.82 kHz and 58.8 kHz in 9.5 mm$\Phi$$\times$9.5mm, 85.22 kHz and 32.6 kHz in 14.3 mm$\Phi$$\times$14.3 mm, resonant frequency of the AE sensor. The AE sensor of 9.5 mm$\Phi$$\times$9.5mm responded higher than the other coupled vibration mode AE sensor at the partial discharge detection in GIS.

  • PDF