• Title/Summary/Keyword: resonant sensor

Search Result 215, Processing Time 0.027 seconds

Detection of Ultrasonic Signals Associated with Tree Growth in Epoxy resin (애폭시수지의 트리성장에 따른 초음파 신호검출)

  • 이상우;송현직;이광식;이동인;김인식
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.285-288
    • /
    • 1998
  • Ultrasonic signal characteristics related with the growth of electrical trees in epoxy resin are examined under 67[Hz] ac voltage application along with a CCD camera and PD current method. The ultrasonic sensor with a resonant frequency of 200[Hz] supported by a mechanical spring is attached directly to the lower-side of plane electrode. The magnitude of Partial discharge and count rate of ultrasonic signals have been measured according to the tree growth from a needle tip in an epoxy sample.

  • PDF

Effective Sensing Volume of Terahertz Metamaterial with Various Gap Widths

  • Park, Sae June;Yoon, Sae A Na;Ahn, Yeong Hwan
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.628-632
    • /
    • 2016
  • We studied experimentally and theoretically the vertical range of the confined electric field in the gap area of metamaterials, which was analyzed for various gap widths using terahertz time-domain spectroscopy. We measured the resonant frequency as a function of the thickness of poly(methyl methacrylate) in the range 0 to 3.2 μm to quantify the effective detection volumes. We found that the effective vertical range of the metamaterial is determined by the size of the gap width. The vertical range was found to decrease as the gap width of the metamaterial decreases, whereas the sensitivity is enhanced as the gap width decreases due to the highly concentrated electric field. Our experimental findings are in good agreement with the finite-difference time-domain simulation results. Finally, a numerical expression was obtained for the vertical range as a function of the gap width. This expression is expected to be very useful for optimizing the sensing efficiency.

Magnetic Inspection using High-frequency Current Behaviors (고주파 전류의 특성과 자기 센서를 이용한 도체 결함 검사 방법)

  • Im, Han-Sang;Park, Jae-Hong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.3
    • /
    • pp.95-101
    • /
    • 2000
  • In this paper, an improved method for magnetic inspection to detect surface of a conductor is presented. The presented method is based on the technique of ECP(Electric Current Perturbation), which is to measure the variation of current flow due to defects with a magnetic sensor. The inspection performance is improved by using high frequency current behaviors in order to concentrate the current near the defect and employing the resonant frequency of a search coil as an operating frequency. By analytical results and experiments of the test specimens, the feasibility of the inspection method is shown.

  • PDF

Research of the characteristics of LB Film using SAW Device (SAW 디바이스를 이용한 LB초박막의 특성연구)

  • 김종민;김기영;장상목;신훈규;권영수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.05a
    • /
    • pp.90-93
    • /
    • 1994
  • A surface acoustic wave(SAW) sensor for the detection of odorants has been constructed by depositing various phospholipids and fatty acids onto the surface of the SAW device. Applying the Langmuir-Blodgett technique. it was possible to deposit the optimal number of layer which was found to be between 10 and 20. The characteristics of a SAW device operating at 310 MHz deposited with phosphatidyl choline were analysed. Menthone, amylacetate, acetion, and other organic gases sho7\\\\`ed different affinities to the coated lipids. An explanation is given for differant odorant affinities based on the monolayer properties of phospholipids. The identification of odorants depending on the type of lipid used for coating is discussed in terms of a comparison of their normalized resonant frequency chi It pat terns. Using a number of different lipid-coated SAW devices. odorants can be identified by a computerized pattern recognition algorithm.

  • PDF

Design and fabrication of micromachined accelerometer using SiOG substrate (SiOG 기판을 이용한 초소형 가속도계의 설계 및 제작)

  • Jung, Hyoung-Kyoon;Ahn, Si-Hong;Park, Chi-Hyun;Lee, June-Young;Jeon, Seung-Hoon;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.275-277
    • /
    • 2004
  • This paper presents design and fabrication of micromachined accelerometer using $100{\mu}m$ thick SiOG substrate. The proposed accelerometer has a resonant frequency, 6kHz. To reduce the off-axis sensitivity of the accelerometer, the mode characteristic of the accelerometer is investigated using ANSYs modal analysis. Because the accelerometer is fabricated using an SiOG substrate, it is expected to be integrated as one-chip IMU sensor with a gyroscope using an SiOG substrate.

  • PDF

Fabrication of a Low Frequency Vibration Driven Electromagnetic Energy Harvester Using FR-4 Planar Spring and Its Characteristics (FR-4 평판 스프링 기반 저주파수용 진동형 전자기식 에너지 하베스터의 제작과 그 특성)

  • Lee, Byung-Chul;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.238-242
    • /
    • 2011
  • This paper describes the fabrication and characteristics of a low frequency vibration driven electromagnetic energy harvester. The fabricated generator consists of a permanent magnet of NdFeB, a FR-4 planar spring and a Copper cylinder type coil. ANSYS modal analysis was used to determine the resonant frequency for the generator. The implemented generator is capable of producing up to 550 mV peak-to-peak under 7 Hz frequency, which has a maximum power of $95.5\;{\mu}W$ with load resistance of $580\;{\Omega}$. This device is shown to generate sufficient power at different resonating modes, and the experimental and simulated results are discussed and composed.

Robust Optical Detection Method for the Vibrational Mode of a Tuning Fork Crystal Oscillator

  • Choi, Hyo-Seung;Song, Sang-Hun
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.93-95
    • /
    • 2015
  • We present an optical detection method for the fundamental vibrational mode of a tuning fork crystal oscillator in air. A focused He/Ne laser beam is directed onto the edge of one vibrating tine of the tuning fork; its vibrating motion chops the incoming laser beam and modulates the intensity. The beam with modulated intensity is then detected and converted to an electrical signal by a high-speed photo-detector. This electrical signal is a sinusoid at the resonant frequency of the tuning fork vibration, which is 32.76 kHz. Our scheme is robust enough that the sinusoidal signal is detectable at up to $40^{\circ}$ of rotation of the tuning fork.

Development of Micro-opto-mechanical Accelerometer using Optical fiber (광섬유를 이용한 미세 광 기계식 가속도 센서의 개발)

  • Lee, Seung-Jae
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.93-99
    • /
    • 2011
  • This paper presents a new type of optical silicon accelerometer using deep reactive ion etching (DRIE) and micro-stereolithography technology. Optical silicon accelerometer is based on a mass suspended by four vertical beams. A vertical shutter at the end of the mass can only moves along the sensing axis in the optical path between two single-mode optical fibers. The shutter modulates intensity of light from a laser diode reaching a photo detector. With the DRIE technique for (100) silicon, it is possible to etch a vertical shutter and beam. This ensures low sensitivity to accelerations that are not along the sensing axis. The microstructure for sensor packaging and optical fiber fixing was fabricated using micro stereolithography technology. Designed sensors are two types and each resonant frequency is about 15 kHz and 5 kHz.

Study on Process Monitoring of Elliptical Vibration Cutting by Utilizing Internal Data in Ultrasonic Elliptical Vibration Device

  • Jung, Hongjin;Hayasaka, Takehiro;Shamoto, Eiji
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • v.5 no.5
    • /
    • pp.571-581
    • /
    • 2018
  • In the present study, monitoring of elliptical vibration cutting process by utilizing internal data in the ultrasonic elliptical vibration device without external sensors such as a dynamometer and displacement sensor is investigated. The internal data utilized here is the change of excitation frequency, i.e. resonant frequency of the device, voltages applied to the piezoelectric actuators composing the device, and electric currents flowing through the actuators. These internal data change automatically in the elliptical vibration control system in order to keep a constant elliptical vibration against the change of the cutting process. Correlativity between the process and the internal data is described by using a vibration model of ultrasonic elliptical vibration cutting and verified by several experiments, i.e. planing and mirror surface finishing of hardened die steel carried out with single crystalline diamond tools. As a result, it is proved that it is possible to estimate the elements of elliptical vibration cutting process, e.g. tool wear and machining load, which are important for stable cutting in such precision machining.

Implantable Flexible Sensor for Telemetrical Real-Time Blood Pressure Monitoring using Polymer/Metal Multilayer Processing Technique (폴리머/ 금속 다층 공정 기술을 이용한 실시간 혈압 모니터링을 위한 유연한 생체 삽입형 센서)

  • Lim Chang-Hyun;Kim Yong-Jun;Yoon Young-Ro;Yoon Hyoung-Ro;Shin Tae-Min
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.599-604
    • /
    • 2004
  • Implantable flexible sensor using polymer/metal multilayer processing technique for telemetrical real-time blood pressure monitoring is presented. The realized sensor is mechanically flexible, which can be less invasively implanted and attached on the outside of blood vessel to monitor the variation of blood pressure. Therefore, unlike conventional detecting methods which install sensor on the inside of vessel, the suggested monitoring method can monitor the relative blood pressure without injuring blood vessel. The major factor of sudden death of adults is a disease of artery like angina pectoris and myocardial infarction. A disease of circulatory system resulted from vessel occlusion by plaque can be preventable and treatable early through continuous blood pressure monitoring. The procedure of suggested new method for monitoring variation of blood pressure is as follows. First, integrated sensor is attached to the outer wall of blood vessel. Second, it detects mechanical contraction and expansion of blood vessel. And then, reader antenna recognizes it using telemetrical method as the relative variation of blood pressure. There are not any active devices in the sensor system; therefore, the transmission of energy and signal depends on the principle of mutual inductance between internal antenna of LC resonator and external antenna of reader. To confirm the feasibility of the sensing mechanism, in vitro experiment using silicone rubber tubing and blood is practiced. First of all, pressure is applied to the silicone tubing which is filled by blood. Then the shift of resonant frequency with the change of applied pressure is measured. The frequency of 2.4 MHz is varied while the applied pressure is changed from 0 to 213.3 kPa. Therefore, the sensitivity of implantable blood pressure is 11.25 kHz/kPa.