• Title/Summary/Keyword: resonant sensor

Search Result 215, Processing Time 0.023 seconds

Diffraction Characteristics for Optical Bio-Sensor of Bi-level Grating with Mushroom Profile (버섯형 이중 격자구조의 광 바이오센서에 대한 회절 특성)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.2
    • /
    • pp.129-134
    • /
    • 2022
  • The resonant bio-sensor of bi-level grating structure with mushroom profile has been designed for operating in the near-infrared (NIR) wavelength range under transverse electric (TE) polarization. The rigorous modal transmission-line theory (MTLT) is applied to determine the optical characteristics, and the reflection resonance of the grating structure is analyzed by varying their geometrical parameters. The numerical result shows that an excited sharp Fano resonance (FR), which does not occur in single layer grating, is demonstrated. The relationship between structure parameters of bi-level grating and the reflectance spectrum in order to guarantee the appearance of FR in the designed structure is fully investigated. An optical bio-sensor with a potential sensitivity of 112.9~214.3 deg/RIU and 447 nm/RIU is designed based on the proposed structure. The proposed mushroom profile may serve as a powerful sample for the design of optical bio-sensors with a wide range of applications.

High-Sensitivity Microstrip Patch Sensor Antenna for Detecting Concentration of Ethanol-Water Solution in Microliter Volume (마이크로리터 부피의 에탄올 수용액 농도 검출을 위한 고감도 마이크로스트립 패치 센서 안테나)

  • Junho Yeo;Jong-Ig Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.510-515
    • /
    • 2022
  • In this paper, a microstrip patch sensor antenna (MPSA) for detecting the concentration of an ethanol-water solution in a microliter volume is proposed. A rectangular slot was added at the radiating edge of the patch to increase the sensitivity to the relative permittivity change. To improve a low input resistance caused by placing an ethanol-water solution, which is a polar liquid with high dielectric constant and high loss tangent, on the patch, a quarter-wave impedance transformer was added between the 50-ohm feedline and the patch, and the MPSA was fabricated on a 0.76 mm-thick RF-35 substrate. A cylindrical container was made of acryl, and 15 microliters of the ethanol-water solution was tested from 0% to 100% of ethanol concentration at 20% intervals. Experiment results show that the resonant frequency increased from 1.947 GHz to 2.509 GHz when the ethanol concentration of the ethanol-water solution was increased from 0% to 100%, demonstrating the performance as a concentration detecting sensor.

Nanoplasmonic Spectroscopic Imaging and Molecular Probes

  • Choe, Yeon-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.85-85
    • /
    • 2013
  • Label-free, sensitive and selective detection methods with high spatial resolution are critically required for future applications in chemical sensor, biological sensor, and nanospectroscopic imaging. Here I describe the development of Plasmon Resonance Energy Transfer (PRET)-based molecular imaging in living cells as the first demonstration of intracellular imaging with PRET-based nanospectroscopy. In-vivo PRET imaging relied on the overlap between plasmon resonance frequency of gold nanoplasmonic probe (GNP) and absorption peak frequencies of conjugated molecules, which leads to create 'quantized quenching dips' in Rayleigh scattering spectrum of GNP. The position of these dips exactly matched with the absorption peaks of target molecules. As another innovative application of PRET, I present a highly selective and sensitive detection of metal ions by creating conjugated metal-ligand complexes on a single GNP. In addition to conferring high spatial resolution due to the small size of the metal ion probes (50 nm in diameter), this method is 100 to 1,000 folds more sensitive than organic reporter-based methods. Moreover, this technique achieves high selectivity due to the selective formation of Cu2+complexes and selective resonant quenching of GNP by the conjugated complexes. Since many metal ion ligand complexes generate new absorption peak due to the d-d transition in the metal ligand complex when a specific metal ion is inserted into the complex, we can match with the scattering frequency of nanoplasmonic metal ligand systems and the new absorption peak.

  • PDF

Piezoelectric PZT Cantilever Array Integrated with Piezoresistor for High Speed Operation and Calibration of Atomic Force Microscopy

  • Nam, Hyo-Jin;Kim, Young-Sik;Cho, Seong-Moon;Lee, Caroline-Sunyong;Bu, Jong-Uk;Hong, Jae-Wan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.4
    • /
    • pp.246-252
    • /
    • 2002
  • Two kinds of PZT cantilevers integrated with a piezoresistor have been newly designed, fabricated, and characterized for high speed AFM. In first cantilever, a piezoresistor is used to sense atomic force acting on tip, while in second cantilever, a piezoresistor is integrated to calibrate hysteresis and creep phenomena of the PZT cantilever. The fabricated PZT cantilevers provide high tip displacement of $0.55\mu\textrm{m}/V$ and high resonant frequency of 73 KHz. A new cantilever structure has been designed to prevent electrical coupling between sensor and PZT actuator and the proposed cantilever shows 5 times lower coupling voltage than that of the previous cantilever. The fabricated PZT cantilever shows a crisp scanned image at 1mm/sec, while the conventional piezo-tube scanner shows blurred image even at $180\mu\textrm{m}/sec$. The non-linear properties of the PZT actuator are also well calibrated using the piezoresistive sensor for calibration.

A Study on the Acoustic Detection of Partial Discharges in Insulation Oil (유중 부분방전의 음향검출에 관한 연구)

  • Kil, Gyung-Suk;Kim, Sung-Wook;Park, Dae-Won;Kim, Sun-Jae;Song, Jae-Man
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.1
    • /
    • pp.53-60
    • /
    • 2010
  • This paper dealt with the acoustic detection of partial discharge (PD) in insulation oil for insulation diagnostics of oil immersed transformers. Electrode systems such as needle to plane, plane to plane, and floating were fabricated to simulate some defects in transformers. A wide band acoustic emission(AE) sensor with the frequency ranges of 100 kHz~1 MHz and a narrow band AE sensor with the resonant frequency of 140 kHz were used in the experiment. Also, a decoupler and an amplifier were designed to detect and amplify the acoustic signal only. The decoupler separates acoustic signal from DC source without any distortion, and the amplifier has the gain of 40 dB in frequency ranges of 11 kHz~4 MHz. In the experiment, frequency components and propagation characteristics of acoustic signal were analyzed, and an algorithm of positioning of PD occurrence by the time difference of arrival was proposed. From the results, the frequency components of the acoustic signal exist from 50 kHz to 200 kHz and the positioning error of PD calculated by three AE sensors was within 1%.

Development and research of gas sensor for monitoring sulfur compounds (황화물 측정용 가스센서의 연구개발)

  • Kim, Ki-Young;Kim, Jong-Min;Ham, Young-Hwan;Chang, Yong-Keun;Kim, Jong-Deuk;Chang, Sang-Mok
    • Journal of Sensor Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.33-39
    • /
    • 1994
  • A quartz crystal microbalance (QCM) sensor system for the detection of odorants, especially environmental pollutant, has been constructed by depositing various phospholipids, activated carbon and lead compound pigment onto the surface of the QCM. The characteristics of a QCM operating at 9 MHz deposited with phosphatidyl- choline were analysed. An explanation is given for different odorant affinities based on the monolayer properties of phospholipids. The identification of odorants is discussed in terms of a comparison of their normalized resonant frequency shift patterns and relative response intensities calculated from the response areas. Applying the lead compound pigment coated QCM, it was possible to detect sulfur compound specifically. Using a number of different lipid-coated QCMs, odorants could be identified by comparing the response patterns.

  • PDF

A Study on Slot Coupled Capacitor Resonator for Non-Invasive Glucose Monitoring in Earlobe (귓불에서 비침습 혈당관찰을 위한 슬롯결합 커패시터 공진기 연구)

  • Yun, Gi-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.4
    • /
    • pp.279-285
    • /
    • 2017
  • In this paper, the resonator with a parallel plate capacitor is newly proposed around sub-microwave frequency band and applied to earlobe for non-invasive glucose monitoring the human biological tissue. The capacitor including the earlobe as dielectric material is connected to inductive slot in the ground plane of the microstrip line. Based on the simulation, one port resonator circuit is designed and fabricated as a prototype. Three step glucose concentration levels(0, 250, 500 mg/dL) was tested, and its reflection coefficients($S_{11}$) were measured. Owing to high Q resonator more than 100, resonant frequency shift of about 9 MHz per glucose level of 250 mg/dL has been successfully measured. This proves that the proposed sensor is applicable to a blood glucose sensor.

Mechanically Induced Long Period Fiber Grating Array Device and Sensor Application (기계적으로 유도되는 장주기 광섬유 격자 배열 소자 및 센서 응용)

  • Lee, Nam-Kwon;Song, Jae-Won;Park, Jea-Hee
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.2
    • /
    • pp.142-148
    • /
    • 2007
  • A mechanically induced long-period fiber grating array was fabricated and its transmission characteristics were measured. The grating away consisted of a rubber cover and a 45 cm metal bar with 10 grating groups. Each grating group was composed of 60 gratings. The period of the grating of the grating groups was increased by $10{\mu}m$ increments from $690{\mu}m$ to $780{\mu}m$. The long period fiber grating was induced when the pressure was applied on the long period grating array and the resonant wavelength depended on the position of applied pressure. The experimental results shows that this long period fiber grating away can be used as a various band rejection filter or a fiber optic sensor.

System identification of soil behavior from vertical seismic arrays

  • Glaser, Steven D.;Ni, Sheng-Huoo;Ko, Chi-Chih
    • Smart Structures and Systems
    • /
    • v.4 no.6
    • /
    • pp.727-740
    • /
    • 2008
  • A down hole vertical seismic array is a sequence of instruments installed at various depths in the earth to record the ground motion at multiple points during an earthquake. Numerous studies demonstrate the unique utility of vertical seismic arrays for studying in situ site response and soil behavior. Examples are given of analyses made at two sites to show the value of data from vertical seismic arrays. The sites examined are the Lotung, Taiwan SMART1 array and a new site installed at Jingliao, Taiwan. Details of the installation of the Jingliao array are given. ARX models are theoretically the correct process models for vertical wave propagation in the layered earth, and are used to linearly map deeper sensor input signals to shallower sensor output signals. An example of Event 16 at the Lotung array is given. This same data, when examined in detail with a Bayesian inference model, can also be explained by nonlinear filters yielding commonly accepted soil degradation curves. Results from applying an ARMAX model to data from the Jingliao vertical seismic array are presented. Estimates of inter-transducer soil increment resonant frequency, shear modulus, and damping ratio are presented. The shear modulus varied from 50 to 150 MPa, and damping ratio between 8% and 15%. A new hardware monitoring system - TerraScope - is an affordable 4-D down-hole seismic monitoring system based on independent, microprocessor-controlled sensor Pods. The Pods are nominally 50 mm in diameter, and about 120 mm long. An internal 16-bit micro-controller oversees all aspects of instrumentation, eight programmable gain amplifiers, and local signal storage.

Humidity Sensor Using Microstrip Patch Antenna (마이크로스트립 패치 안테나를 이용한 습도 센서)

  • Junho Yeo
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.1
    • /
    • pp.71-76
    • /
    • 2023
  • In this paper, a humidity sensor using a microstrip patch antenna(MPA) and polyvinyl alcohol(PVA) is studied. PVA is a polymer material whose permittivity changes with humidity, and a rectangular slot is added to the radiating edge of the MPA, which is sensitive to changes in electric field, in order to increase the sensitivity to changes in relative permittivity. After thinly coating the area around the radiating edge with the rectangular slot of the MPA fabricated on a 0.76 mm-thick RF-35 substrate with PVA, the changes in the resonant frequency and magnitude of the MPA's input reflection coefficient are measured when relative humidity is adjusted from 40% to 80% in 10% increments at a temperature of 25 degrees using a temperature and humidity chamber. Experiment results show that when the relative humidity increases from 40% to 80%, the resonance frequency of the antenna' input reflection coefficient decreases from 2.447 GHz to 2.418 GHz, whereas the magnitude increases from -7.112 dB to -3.428 dB.