• Title/Summary/Keyword: resonant frequency tracking

Search Result 43, Processing Time 0.022 seconds

A Novel Half-Bridge Resonant Inverter With Load Free-wheeling Modes (부하 환류모드를 갖는 새로운 하프 브리지 공진형 인버터)

  • Yeon Jae-Eul;Cho Kyu-Min;Kim Hee-Jun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.3 s.303
    • /
    • pp.71-80
    • /
    • 2005
  • This paper proposes a new circuit topology of the half-bridge resonant inverter and presents its digital control scheme. As the proposed half-bridge inverter can be operated in the load-freewheeling modes, pulse width modulation (PWM) control method can be used for the output power control. The proposed half-bridge inverter can keep unity output displacement factor under the load-impedance varying conditions, if a new PWM control scheme based on the resonant frequency tracking algorithm is adopted. In this paper, the operation principle, electrical characteristics and detailed digital control scheme of the proposed half-bridge resonant inverter and loss analysis comparing with a conventional half bridge inverter is described. The experimental results of the proto-type experimental setup to verify the validity of the proposed half-bridge resonant inverter are presented and discussed.

A New Resonant H/B Inverter Having Load Freewheeling Modes (부한 환류모드를 갖는 새로운 반 브리지 공진형인버터)

  • Yeon, Jae-Eul;Cho, Kyu-Min;Oh, Won-Seok;Kim, Hee-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.153-156
    • /
    • 2004
  • This paper presents a new circuit topology of the half-bridge resonant inverter. As the proposed half-bridge inverter can be operated in the load freewheeling modes, pulse width modulation (PWM) control method can be used for the output power control. The proposed half-bridge inverter should keep unity output displacement factor under the load-impedance varying conditions, if a new PWM control scheme based on the resonant frequency tracking algorithm is adopted. In this paper, electrical characteristics, and losses analysis of the proposed half-bridge resonant inverter are described. Simulation and experimental results of the prototype experimental setup to verify the validity of the proposed half-bridge resonant inverter are presented and discussed.

  • PDF

Automatic frequency Control Current-Source Inverter for Forging Application

  • Chudjuarjeen, Saichol;Koompai, Chayant;Monyakul, Veerapol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.238-242
    • /
    • 2004
  • The paper describes an automatic frequency control current-fed inverter for forging applications. The IGBT in series with diodes as its switching devices in the inverter circuit which is of full-bridge type. The operating frequency is automatically tracked to maintain a small constant leading phase angle when load parameters change. The load voltage is controlled to protect the switches. The output power can be adjusted by varying the input current from phase controlled rectifiers which is a part of current source. The system has been operated at 15-17 kHz. The output power transferred to the load is 1,595 watts. It can heat the steel work pieces with 15 mm diameter and 120 mm long from room temperature to approximately 1100 $^{\circ}C$ within 20 seconds with 0.97 leading power factor on the input side.

  • PDF

Effect of an initial displacement on a nano-guiding system (나노 가이드 시스템에서 초기 변위의 영향에 관한 연구)

  • Lee, Dong-Yeon;Lee, Moo-Yeon;Gweon, Dae-Gab;Park, June-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1396-1403
    • /
    • 2006
  • This study shows that the system performance of a positioning system composed of a piezoelectric actuator-driven flexure guide depends largely on the preload applied on the flexure guide and the driving input amplitude. We used a flexure guided system that had an original resonant frequency of 54Hz. Our experiment showed that we could increase the driving bandwidth above the original resonant frequency, for a case involving a large preload and a small input amplitude. Results show that there is a specific 'separation frequency' where the response of the moving mass of the flexure system decouples from the response oi the piezoelectric actuator, and this specific separation frequency can be selected by a proper choice of the preload and the input amplitude. To find the separation frequency, sine sweep tests were performed. To confirm the increased system bandwidth frequency, open-loop sine tracking experiments were performed. Test results show that the system responds very well up to 130 Hz frequency higher than the original natural frequency (54Hz).

  • PDF

Effect of an Initial Displacement on a Nano-guiding System (나노 가이드 시스템에서 초기 변위의 영향에 관한 연구)

  • Lee, Moo-Yeon;Gweon, Dae-Gab;Lee, Dong-Yeon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.4 s.109
    • /
    • pp.346-354
    • /
    • 2006
  • This study shows that the system performance of a positioning system composed of a piezoelectric actuator-driven flexure guide depends largely on the preload applied on the flexure guide and the driving input amplitude. We used a flexure guided system that had an original resonant frequency of 54 Hz. Our experiment showed that we could increase the driving bandwidth above the original resonant frequency, for a case involving a large preload and a small input amplitude. Results show that there is a specific 'separation frequency' where the response of the moving mass of the flexure system decouples from the response of the piezoelectric actuator, and this specific separation frequency can be selected by a proper choice of the preload and the input amplitude. To find the separation frequency, sine sweep tests were performed. To confirm the increased system bandwidth frequency, open-loop sine tracking experiments were performed. Test results show that the system responds very well up to 130 Hz frequency higher than the original natural frequency (54 Hz).

Effect of Printing Qualities on the Resonant Frequencies of Printed UHF RFID Tag Antennas (인쇄 UHF RFID 태그 안테나의 인쇄 품질에 따른 공진 주파수의 영향)

  • Kim, Chung-Hwan;Lee, Yong-Shik;Kim, Young-Guk;Kim, Dong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.11
    • /
    • pp.90-94
    • /
    • 2008
  • Recently, a great deal of research is focused on the printed electronics. One of their mainly concerned products is printed RFID tag. RFID technology has attracted researchers and enterprises as a promising method for automatic identification, and they are expected to replace conventional bar codes in inventory tracking and management. The key to successful RFID technology lies in developing low-cost RFID tags and the first step in applying printing technology to RFID systems is to replace antennas that are conventionally produced by etching copper or aluminum. However, due to the printing quality variations, errors, and lower conductivity, the performance of the printed RFID antennas is lower than that of antennas manufactured by conventional etching methods. In this paper, the effect of variations in the printing conditions on the antenna performance is investigated. Three levels for each condition parameter is assumed and effect on the resonant frequency are examined experimentally based on orthogonal array. The most serious factor that affects the resonant frequency of the antenna is the non-uniformity of the edge and the resonant frequency is found to be lower as the non-uniformity increases.

Implementation of a Transcutaneous Power Transmission System for Implantable Medical Devices by Resonant Frequency Tracking Method (주파수 추적 방식에 의한 이식형 의료기기용 무선전력전달 장치 구현)

  • Lim, H.G.;Lee, J.W.;Kim, D.W.;Lee, J.H.;Seong, K.W.;Kim, M.N.;Cho, J.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.5
    • /
    • pp.401-406
    • /
    • 2010
  • Recently, many implantable medical devices have been developed and manufactured in many countries. In these devices, generally, energy is supplied by a transcutaneous method to avoid the skin penetration due to the power wires. As the most transcutaneous power transmission methods, the electromagnetic coupling between two coils and resonance at a specific frequency has been used widely. However, in case of a transcutaneous power transmitter with a fixed switching frequency to drive an electromagnetic coil, inefficient power transmission and thermal damage by the undesirable current variation may occur, because the electromagnetic coupling state between a primary coil and a secondary coil is very sensitive to skin thickness of each applied position and by person. In order to overcome these defects, a transcutaneous power transmitter of which operating frequency can be automatically tracked into the resonance frequency at each environment has been designed and implemented. Through the results of experiments for different coil surroundings, we have been demonstrated that the implemented transcutaneous power transmitter can track automatically into a varied resonance frequency according to arbitrary skin thickness change.

Full Bridge Resonant Inverter Using Asymmetrical Control with Resonant-frequency Tracking for Ultrasonic Cleaning Applications

  • Jittakort, Jirapong;Sangswang, Anawach;Naetiladdanon, Sumate;Koompai, Chayant;Chudjuarjeen, Saichol
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1150-1159
    • /
    • 2017
  • Flexibility in the power control of ultrasonic transducers has remained a challenge for cleaning applications. This paper introduces a modification of the existing piezoelectric ceramic transducer (PCT) circuit to increase the range of operation through its impedance characteristics. The output power is controlled using the asymmetrical voltage-cancellation (AVC) method. Together with a phase-locked loop control, the switching frequency of the inverter is automatically adjusted to maintain a lagging phase angle under load-parameter variations during the cleaning process. With the proposed modification, the region of the zero-voltage switching (ZVS) operation is extended, which results in a wider range of output power control. A hardware prototype is constructed and the control algorithm is implemented using an STM32F4 microcontroller. Simulation and experimental results are provided to verify the proposed method for a 50-W PCT. The operating frequency and output power ranges under study are 37 - 41 kHz and 15.8 - 50 W, respectively.

Design and Optimization of Suspension with Optical Flying Head Using Integrated Optimization Frame (통합최적프레임을 사용한 광부상헤드를 탑재한 서스팬션의 최적화)

  • Kim, Ji-Won;Park, Kyoung-Su;Yoon, Sang-Joon;Choi, Dong-Hoon;Park, Young-Pil;Lee, Jong-Soo;Park, No-Cheol
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.2
    • /
    • pp.161-168
    • /
    • 2005
  • This paper optimizes the optical flying head(OFH) suspension using the integrated optimization frame, which automatically integrates the analysis with the optimization and effectively implements the repetitive works between them. The problem formulation for the optimization is suggested to improve the dynamic compliance of OFH and to shift the resonant frequencies caused tracking errors to high frequency domain. Furthermore, the minimization of the effective suspension mass that leads to decrease the so-called 'lift-off' as the disk-head separation acceleration divided by the suspension load is taken into consideration. In particular, this study is carried out the optimal design considering the process of modes tracking through the entire optimization processes. The advanced suspension that reduces the effective mass of the suspension and increases the resonant frequencies of sway and $2^{nd}$ torsion over 10kHz is achieved by using the integrated optimization frame.

  • PDF

Transient-Performance-Oriented Discrete-Time Design of Resonant Controller for Three-Phase Grid-Connected Converters

  • Song, Zhanfeng;Yu, Yun;Wang, Yaqi;Ma, Xiaohui
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.1000-1010
    • /
    • 2019
  • The use of internal-model-based linear controller, such as resonant controller, is a well-established technique for the current control of grid-connected systems. Attractive properties for resonant controllers include their two-sequence tracking ability, the simple control structure, and the reduced computational burden. However, in the case of continuous-designed resonant controller, the transient performance is inevitably degraded at a low switching frequency. Moreover, available design methods for resonant controller is not able to realize the direct design of transient performances, and the anticipated transient performance is mainly achieved through trial and error. To address these problems, the zero-order-hold (ZOH) characteristic and inherent time delay in digital control systems are considered comprehensively in the design, and a corresponding hold-equivalent discrete model of the grid-connected converter is then established. The relationship between the placement of closed-loop poles and the corresponding transient performance is comprehensively investigated to realize the direct mapping relationship between the control gain and the transient response time. For the benefit of automatic tuning and real-time adaption, analytical expressions for controller gains are derived in detail using the required transient response time and system parameters. Simulation and experimental results demonstrate the validity of the proposed method.