• Title/Summary/Keyword: resonant circuit

Search Result 939, Processing Time 0.028 seconds

Parameter Optimization for Vibration Control of a Cantilever Beam Using Piezoelectric Shunt Damping System (압전분기회로를 이용한 보 구조물의 진동제어 파라미터 최적화 해석)

  • Lim K.C.;Cho D.S.;Park W.C.;Kee C.D.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.918-921
    • /
    • 2005
  • According to the mechanical-electrical coupling characteristics and the electrical Impedance property of resistor-inductor-capacitor(RLC) series resonant circuit, the mechanical impedance analysis of a bimorph piezoceramic patch shunted with a series RLC resonant circuit is conducted. The displacement transfer function of a cantilever beam bonded with a piezoelectric shunt damping module is deduced in the case of single mode vibration of the beam. By the use of vibration damping theory of tuned mass damper system, the parameter optimization of piezoelectric shunt damping system is performed. The optimal resonant state of the shunting circuit can be obtained when the resister and conductor are optimally adjusted. Test results show that the vibration control effect as well improved with optimized piezoelectric shunt system.

  • PDF

New topology of Partial Resonant Type Buck-Boost Chopper (부분공진형 승.강압 초퍼의 새로운 토포로지)

  • 고강훈;라병훈;권순걸;구헌회;이현우
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.39-42
    • /
    • 1998
  • This paper is presented the Partial Resonant Soft Switching Mode Power Converter which is adapted the power converter having the partial resonant soft switching mode, that makes switches operated when the resonant current or voltage becomes zero by making the resonant circuit partially at turning on and off of the switches with suitable layout of the resonant elements and switch elements in the converter. Also, this paper includes the analysis and simulation of the Partial Resonant type Buck-Boost Chopper.

  • PDF

Characteristic analysis of the resonant current injection type high frequency resonant inverter using ZVS (ZVS를 이용한 공진전류 주입형 고주파 공진 인버터의 특성해석)

  • Won, Jae-Sun;Kim, Hae-Jun;Cho, Gyu-Pan;Kim, Dong-Hee;Bae, Young-Ho;Min, Byung-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1038-1040
    • /
    • 2001
  • A half-bridge type resonant current injection type high frequency resonant inverter using ZVS(Zero-Voltage-Switching) used as power source of induction heating at high frequency is presented in this paper. This proposed inverter can reduce distribution of the switching current because of using the current of serial resonant circuit to the input current of the parallel one. The analysis of the proposed circuit is generally described by using the normalized parameters, the principle of basic operating and the its characteristics are estimated by the parameters such as switching frequency and load resistance. According to the calculated characteristics value, this paper proves the validity of theoretical analysis through the Pspice.

  • PDF

The Analysis of a High Frequency Series Resonant DC-DC Converter (고주파 직렬공진형 DC-DC Converter의 특성 해석)

  • 이윤종;김철진
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.9
    • /
    • pp.934-943
    • /
    • 1990
  • There are no turn-on losses in the series Resonant Converter which operates above the resonance frequency, and the commutation stress on the switched component is low. For a given Series Resonant Converter with specified load resistance, the output voltage is a function of the operation frequency. This paper describes the static and dynamic characteristic analysis of the Series Resonant DC to DC Converter, which is operating above the resonant frequency, with frequency control. For the analysis method, state plane technique is adopted, and the circuit operation is defined from normalized switching frequency, Fsn. Under this condition, circuit performance is analyzed ideally. The validity of the proposed analysis is verified by comparing with experimental results, the stability of the converter is confirmed against small variations around the operating point by conventional frequency domain analysis, and the stress quantity added to switch component is shown.

  • PDF

A Novel Three-Phase Quasi-Resonant DC Link Inverter (새로운 3상 준공진 직류링크 인버터)

  • Lee, Jin-Woo;Park, Min-Ho;Won, Jong-Soo
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.5
    • /
    • pp.479-488
    • /
    • 1991
  • A novel three-phase quasi-resonant dc link inverter (QRI)with a switch connected between dc voltage source and resonant inductor is proposed. According to the state of switching and load current, the operating mode of the proposed inverter scheme is classified into free-wheeling, inverting, and rectifying mode. By examining the behavior of the circuit in each operating mode, an equivalent circuit which represents all the modes in a unified manner is derived. The operating principle of QRI at inverting mode is analyzed, and it is shown that the maximum voltage of resonant dc link is confined to twice the dc source voltage and that both the zero voltage switching of inverter and the zero current switching of inserted switch are guaranteed. An appropriate current control algorithm is suggested, and the opeating characteristics of proposed resonant inverter are verified through both simulation and experiment.

  • PDF

Resonant Pulse Power Converter with a Self-Switching Technique

  • Kim, Hyeok-Jin;Chung, Gyo-Bum;Cho, Jae-Ho
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.784-791
    • /
    • 2010
  • In this paper, a resonant pulse power converter (RPPC) is proposed. The proposed RPPC transfers the pulse-shape power from a DC source to a load periodically. The RPPC consists of a resonant circuit and a resonant pulse converter driven by a self-switching circuit. Depending on the magnitude difference between the input and output voltages, the operations of the RPPC are divided into 4 modes; boost mode, hybrid mode, direct mode and cut-off mode, respectively. The main switch of the RPPC turns on in the ZCS condition and off in the ZVS condition spontaneously. The operational principles of a RPPC using the self-switching technique are analyzed and verified in experiments. An example of a RPPC application is demonstrated in the area of thermoelectric energy harvesting.

Optimal Design of the LLC HB Resonant Converter for Notebook Computer Adapter (노트북 컴퓨터 어댑터용 LLC 하프 브리지 공진형 컨버터 최적설계)

  • Yoo, Byoung-Seon;Kim, Chang-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.8
    • /
    • pp.1418-1423
    • /
    • 2007
  • The topology of LLC half bridge resonant converter provides ZVS characteristic. The voltage stress and current stress are smaller than that of the general resonant converters. So the LLC HB resonant converter can be considered as a optimal circuit for the notebook computer adapter. In the adapter design, we should consider the weight, the size and the overheat of the adapter. Thus the higher efficiency is an essential particular. First of all, the optimal design of transformer is the most important facts. Some parameters should be considered in order to get the highest efficiency. The adapter is designed through the considering of these parameters including the PFC circuit as the pre-regulator. It converts AC line input into about DC 390V link voltage of the LLC HB converter input and the converter has 16V/90W ratings. The efficiency measured is about up to 93%.

A Characteristic of Alternative Flyback Multi-Resonant Converter (AT 플라이백 다중 공진형 컨버터의 동작특성)

  • Jeong, Jin-Beom;Kim, Hee-Jun;Kim, Chang-Sun;Woo, Seung-Hoon;Park, Woo-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1380-1382
    • /
    • 2005
  • The multi-resonant converter minimizes a parasitic oscillation by using the resonant tank circuit absorbed parasitic reactance existing in a converter circuit. So it is possible that the converter operated at a high frequency has a high efficiency because the losses are reduced. However, the resonant voltage stress across a switch is four or five times a input voltage. This high voltage stress increases the conduction loss. In this paper, we proposed the AT flyback multi-resonant converter. The proposed converter can reduce the voltage stress to two or three times by using two series input capacitors. The operational principle of the proposed converter was verified through the experimental converter.

  • PDF

Implementation of Wireless Power Transfer Circuit by Using Magnetic Resonant Coupling Method

  • Lho, Young-Hwan
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.306-309
    • /
    • 2019
  • Wireless charging is a technology of transmitting power through an air gap to an electrical load for the purpose of energy dissemination. Compared to traditional charging with code, wireless power charging has many benefits of avoiding the hassle from connecting cables, rendering the design and fabrication of much smaller devices without the attachment of batteries, providing flexibility for devices, and enhancing energy efficiency, etc. A transmitting coil and a receiving coil for inductive coupling or magnetic resonant coupling methods are available for the near field techniques, but are not for the far field one. In this paper, the wireless power transfer (WPT) circuit by using magnetic resonant coupling method with a resonant frequency of 13.45 Mhz for the low power system is implemented to measure the power transmission efficiency in terms of mutual distance and omnidirectional angles of receiver.

Performance Analysis and Equivalent Circuit Extraction for Magnetic Resonance Type Wireless Power Transfer (자기공진방식 무선전력전송 등가회로 추출 및 특성 분석)

  • Park, Dae Kil;Kim, Young Hyun;Koo, Kyung Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.4
    • /
    • pp.371-376
    • /
    • 2017
  • In this paper, we propose a magnetic resonant WPT(wireless power transfer) scenario using a large coil resonating at 6.78 MHz, and compare the characteristics through a three-dimensional electromagnetic field simulation and a magnetic resonant WPT equivalent circuit. The magnetic resonant WPT equivalent circuit proposed in this paper considers the parasitic capacitance generated between the coils in addition to the conventional equivalent circuit. Based on this analysis, we fabricated the magnetic resonant WPT coil and compared it with simulation prediction. As a result of comparison, the transfer characteristics and the resonance frequency shift can be predicted. Error proposed characteristics of equivalent circuit for the magnetic resonant WPT and the measured values are estimated to be ${\Delta}{\mid}S11{\mid}=1.31dB$ and ${\Delta}{\mid}S21{\mid}=1.21dB$, respectively.