• 제목/요약/키워드: resonant capacitors

검색결과 99건 처리시간 0.022초

A Novel Two Phase Interleaved LLC Series Resonant Converter using a Phase of the Resonant Capacitor

  • Yi, Kang-Hyun;Moon, Gun-Woo
    • Journal of Power Electronics
    • /
    • 제8권3호
    • /
    • pp.275-279
    • /
    • 2008
  • An LLC series resonant converter has many unique characteristics and improvements over PWM topologies. However, many output capacitors are needed in parallel to satisfy output voltage ripple and the rated ripple current of the capacitors. This paper deals with a novel two phase interleaved LLC resonant converter using a phase of the resonant capacitor. The proposed converter can satisfy output voltage ripple and a rated ripple current of capacitors with few output capacitors, relatively. The operation and features are considered in detail and a prototype with a 12V-100A output is investigated.

Novel two phase interleaved LLC series resonant converter using a phase of the resonant capacitor

  • Yi, Kang-Hyun;Moon, Gun-Woo;Heo, Tae-Won
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.526-528
    • /
    • 2008
  • LLC series resonant converter has many unique characteristics and improvement over PWM topologies. However, many output capacitors should be needed in parallel to satisfy an output voltage ripple and a rated ripple current of the capacitors. This paper is deal with a novel two phase interleaved LLC resonant converter using a phase of the resonant capacitor. The proposed converter can satisfy output voltage ripple and a rated ripple current of capacitors with few output capacitors, relatively. The operation and features is considered in detail and a prototype with a 12V-100A output is investigated.

  • PDF

노치 필터 적용 양방향 LLC-LC 공진컨버터 (Bidirectional LLC-LC Resonant Converter With Notch Filter)

  • 장기찬;김은수
    • 전력전자학회논문지
    • /
    • 제26권6호
    • /
    • pp.411-420
    • /
    • 2021
  • In this paper, bidirectional LLC-LC resonant DC-DC converter with notch filters in the primary side of resonant circuits is proposed. Even if resonant capacitors are used on the primary and secondary sides, the proposed converter can operate with the high gain characteristics of the LLC resonant converter without mutual coupling of resonant capacitors, regardless of the direction of power flow. In addition, by applying notch filters, the proposed converter can operate with a wider gain control range and can cope with overload and short circuit. The analysis and operating characteristics of the proposed bidirectional LLC-LC resonant converter are investigated. A 3.3 kW prototyped bidirectional LLC-LC resonant converter connected to 750 VDC buses is designed and tested to verify the validity and applicability of this proposed converter.

Medium Voltage Resonant Converter with Balanced Input Capacitor Voltages and Output Diode Currents

  • Lin, Bor-Ren;Du, Yan-Kang
    • Journal of Power Electronics
    • /
    • 제15권2호
    • /
    • pp.389-398
    • /
    • 2015
  • This paper presents a 1.92 kW resonant converter for medium voltage applications that uses low voltage stress MOSFETs (500V) to achieve zero voltage switching (ZVS) turn-on. In the proposed converter, four MOSFETs are connected in series to limit the voltage stress of the power switches at half of the input voltage. In addition, three resonant circuits are adopted to share the load current and to reduce the current stress of the passive components. Furthermore, the transformer primary and secondary windings are connected in series to balance the output diode currents for medium power applications. Split capacitors are adopted in each resonant circuit to reduce the current stress of the resonant capacitors. Two balance capacitors are also used to automatically balance the input capacitor voltage in every switching cycle. Based on the circuit characteristics of the resonant converter, the MOSFETs are turned on under ZVS. If the switching frequency is less than the series resonant frequency, the rectifier diodes can be turned off under zero current switching (ZCS). Experimental results from a prototype with a 750-800 V input and a 48V/40A output are provided to verify the theoretical analysis and the effectiveness of the proposed converter.

Analysis and Implementation of LC Series Resonant Converter with Secondary Side Clamp Diodes under DCM Operation for High Step-Up Applications

  • Jia, Pengyu;Yuan, Yiqin
    • Journal of Power Electronics
    • /
    • 제19권2호
    • /
    • pp.363-379
    • /
    • 2019
  • Resonant converters have attracted a lot of attention because of their high efficiency due to the soft-switching performance. An isolated high step-up converter with secondary-side resonant loops is proposed and analyzed in this paper. By placing the resonant loops on the secondary side, the current stress for the resonant capacitors is greatly reduced. The power loss caused by the equivalent series resistance of the resonant capacitor is also decreased. Clamp diodes in parallel with the resonant capacitors ensure a unique discontinuous current mode in the converter. Under this mode, the active switches can realize soft-switching during both turn-on and turn-off transitions. Meanwhile, the reverse-recovery problems of diodes are also alleviated by the leakage inductor. The converter is essentially a step-up converter. Therefore, it is helpful for decreasing the transformer turn-ratio when it is applied as a high step-up converter. The steady-state operation principle is analyzed in detail and design considerations are presented in this paper. Theoretical conclusions are verified by experimental results obtained from a 500W prototype with a 35V-42V input and a 400V output.

V2G EV 충전기(OBC)를 위한 개선된 고효율 양방향 공진컨버터 (Improved High Efficiency Bidirectional Resonant Converter for V2G EV Charger (OBC))

  • 오재성;김민지;이준환;우정원;김은수;원종섭
    • 전력전자학회논문지
    • /
    • 제24권6호
    • /
    • pp.438-444
    • /
    • 2019
  • In this paper, bidirectional LLC resonant DC/DC converters with the primary auxiliary windings in transformers of resonant circuits are proposed. Although the resonant capacitors are used on both the primary and secondary sides, regardless of the direction of power flow, the main feature of the proposed converters exhibits high gain characteristics without any mutual coupling between the resonant capacitors. For one of the proposed converters, an investigation of the operating characteristics in each mode has been carried out. A prototype of a 3.3 kW bidirectional LLC resonant converter for interfacing 750 V DC buses has been built and tested to verify the validity and applicability of the proposed converter.

A ZVS Resonant Converter with Balanced Flying Capacitors

  • Lin, Bor-Ren;Chen, Zih-Yong
    • Journal of Power Electronics
    • /
    • 제15권5호
    • /
    • pp.1190-1199
    • /
    • 2015
  • This paper presents a new resonant converter to achieve the soft switching of power devices. Two full-bridge converters are connected in series to clamp the voltage stress of power switches at Vin/2. Thus, power MOSFETs with a 500V voltage rating can be used for 800V input voltage applications. Two flying capacitors are connected on the AC side of the two full-bridge converters to automatically balance the two split input capacitor voltages in every switching cycle. Two resonant tanks are used in the proposed converter to share the load current and to reduce the current stress of the passive and active components. If the switching frequency is less than the series resonant frequency of the resonant tanks, the power MOSFETs can be turned on under zero voltage switching, and the rectifier diodes can be turned off under zero current switching. The switching losses on the power MOSFETs are reduced and the reverse recovery loss is improved. Experiments with a 1.5kW prototype are provided to demonstrate the performance of the proposed converter.

A Capacitance Estimation of Film Capacitors in an LCL-Filter of Grid-Connected PWM Converters

  • Heo, Hong-Jun;Im, Won-Sang;Kim, Jang-Sik;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • 제13권1호
    • /
    • pp.94-103
    • /
    • 2013
  • A capacitor deterioration of LCL-filter grid-connected PWM converters is progressed by the self-healing mechanism. It leads to the degradation of the filter performance and drop of power factor. Thus, it is required to diagnose fault-point of capacitors and determine the replacement time. Typically, the fault of capacitors is determined when the capacitance is reduced up to 80% from initial value. This paper proposes algorithm to the determine capacitor replacement time of an LCL filter. The algorithm takes the advantage of change of the response on the injected resonant frequency corresponding to 80% value from the initial capacitance. The results of the algorithm are demonstrated through simulations and experiments.

AT 플라이백 다중공진형 컨버터 동작모드 해석 (Operational Mode Analysis of the AT Flyback Multi-Resonant Converter)

  • 박귀철;김창선
    • 전기학회논문지
    • /
    • 제56권7호
    • /
    • pp.1250-1254
    • /
    • 2007
  • The multi-resonant(MR) converter has a characteristics that the parasitic components existing in the converter are absorbed into the resonant circuits. The designed MR converter could be got a high efficiency and a high power density because the switching power losses are reduced effectively due to resonant switching circuit. However, the high resonant voltage stress of switching power devices leads to the conduction loss. In this paper, it is proposed the novel alternated(AT) flyback multi-resonant converter to overcome such a drawback. The suggested converter dc input is divided by two series input filter capacitors. The resonant stress voltage is reduced to 2-3 times the input voltage without any complexity and it provides the various circuit schemes in lots of applications. The proposed flyback MR converter is verified through simulation and experiment.

고전압 마이카 커패시터 개발에 관한 연구 (A Study on Development of High Voltage Mica Capacitors)

  • 윤의중;최철순;김재욱;이동혁
    • 전기학회논문지
    • /
    • 제57권7호
    • /
    • pp.1229-1234
    • /
    • 2008
  • In this work, ultra high-voltage (17 - 50 kV AC), reliable 80 pF mica capacitors for partial discharge system application were investigated. Mica was used as the dielectric of the capacitors. Using the conservative design rule, over 3 individual $50\;{\mu}m$ thick mica sheets with a size of 30mm{\times}35mm were used with lead foils to form a parallel capacitor element and 20 mica sheets were interleaved with lead foils to form a series stack of parallel capacitor element to meet the requirements of the capacitors. The dimensions of the fabricated 80 pF capacitors for 17 kV AC and 50 kV AC were $90\;mm{\times}90\;mm$ and $95\;mm{\times}180\;mm$, respectively. The high-frequency characteristics of the capacitance (C) and dissipation factor (D) of the developed capacitors were measured using a capacitance meter. The developed capacitors exhibited C of 79.5 - 87.5 pF, had D of 0.001% over the frequency ranges of 150 kHz to 50 MHz, had a self-resonant frequency of 65 MHz, and showed results comparable to those measured for the capacitors prepared recently by $Adwel^{Tm}$. The developed capacitors also showed excellent characteristics for thermal shock test and temperature cycling test.