• Title/Summary/Keyword: resonance excitation

Search Result 333, Processing Time 0.036 seconds

Dynamic Characteristics of Coaxial Swirl-Jet Injector with Acoustic Excitation (동축형 스월-제트 인젝터의 음향가진에 따른 동특성)

  • Bae, Jinhyun;Kim, Taesung;Jeong, Seokgyu;Jeong, Chanyeong;Choi, Jeong Yeol;Yoon, Youngbin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.691-698
    • /
    • 2017
  • In this study, the injector transfer function (ITF) of a gas-gas coaxial jet-swirl injector is measured by applying excitation to jet or swirl flow using a loudspeaker. As a result of measuring the ITF according to the variation of feed system length, the ITF peak occurs at the resonance frequency of the space where the perturbed flow passes. When applying the excitation to the jet flow, as the jet flow increases up to 56 slpm, the magnitude of ITF decreases, and ITF increases thereafter. Therefore the larger the velocity difference between the jet and the swirl flow, the larger the ITF. In the case of the swirl excitation, the ITF decreases as the jet flow increases because of the decrease of the energy with respect to the constant flow at the downstream. This difference is caused by the location of the hot wire anemometer on the downstream of the injector center axis.

  • PDF

Design of Friction Dampers for Seismic Response Control of a SDOF Building (단자유도 건물의 지진응답제어를 위한 마찰감쇠기 설계)

  • Min, Kyung-Won;Seong, Ji-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.22-28
    • /
    • 2010
  • Approximate analysis for a building installed with a friction damper is performed to get insight of its dynamic behavior. Energy balance equation is used to have a closed analytical form solution of dynamic magnification factor(DMF). It is found out that DMF is dependent on friction force ratio and resonance frequency. Approximation of DMF and equivalent damping ratio of a friction damper is proposed with such assumption that the building with a friction damper shows harmonic steady-state response and narrow banded response behavior near resonance frequency. Linear transfer function from input external force to output building displacement is suggested from the simplified DMF equation. Root mean square of a building displacement is derived under earthquake-like random excitation. Finally, design procedure of a friction damper is proposed by finding friction force corresponding to target control ratio. Numerical analysis is carried out to verify the proposed design procedure.

Nonlinear Analysis of a Forced Beam with Internal Resonances (내부공진을 가진 보의 비선형 강제진동해석)

  • 이원경;소강영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1897-1907
    • /
    • 1991
  • An analysis is presented for the primary resonance of a clamped-hinged beam, which occurs when the frequency of excitation is near one of the natural frequencies, .omega.$_{n}$. Three mode interactions, .omega.$_{2}$=3.omega.$_{1}$, and .omega.$_{3}$=.omega.$_{1}$+2.omega.$_{2}$, are considered and their influence on the response is studied. The case of two mode interaction, .omega.$_{2}$=3.omega.$_{1}$, is also considered in order to compare it with the case of three mode interactions. The straight beam experiencing mid-plane stretching is governed by a nonlinear partial differential equation. By using Galerkin's method the governing equation is reduced to a system of nonautonomous nonlinear ordinary differential equations. The method of multiple scales is applied to obtain steady-state responses of the system. Results of numerical investions show that there exists no significant difference between both modal interactions.

Effects of Torque Fluctuation on the Stability of the Transverse Vibration of a Spinning Disk (영구자석 스핀들 모터의 코깅토크가 회전디스크 굽힘 진동의 안정성에 미치는 영향)

  • 이기녕;신응수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.942-947
    • /
    • 2001
  • This paper provides a stability analysis of the transverse vibration of a spinning disk under the torque fluctuation from a permanent magnetic motor. An analytical model has been formulated for a flexible annular disk with its spinning velocity varying harmonically with the same frequency as the cogging torque. A perturbation method based on multiple time scales is applied to perform the stability analysis. Based on expressions for the amplitude and frequency of the parametric excitation, stability boundaries are determined in terms of a nominal spindle velocity, the least common multiple of poles and slots, the magnitude of torque fluctuation and the modal characteristics of. the disk. The stability diagrams predicted by perturbation have been verified numerically using the Floquet theory, which is in good agreement. In conclusion, the fluctuation in spinning velocity is found to affect the stability of the transverse vibration of a rotating disks. The results of this work can be applied to high precision spindle systems such as computer storage systems.

  • PDF

Simultaneous resonances of SSMFG cylindrical shells resting on viscoelastic foundations

  • Foroutan, Kamran;Ahmadi, Habib
    • Steel and Composite Structures
    • /
    • v.37 no.1
    • /
    • pp.51-73
    • /
    • 2020
  • The present paper investigates the simultaneous resonance behavior of spiral stiffened multilayer functionally graded (SSMFG) cylindrical shells with internal and external functionally graded stiffeners under the two-term large amplitude excitations. The structure is embedded within a generalized nonlinear viscoelastic foundation which is composed of a two-parameter Winkler-Pasternak foundation augmented by a Kelvin-Voigt viscoelastic model with a nonlinear cubic stiffness. The cylindrical shell has three layers consist of ceramic, FGM, and metal. The exterior layer of the cylindrical shell is rich ceramic while the interior layer is rich metal and the functionally graded material layer is located between these layers. With regard to classical shells theory, von-Kármán equation, and Hook law, the relations of stress-strain are derived for shell and stiffeners. The spiral stiffeners of the cylindrical shell are modeled according to the smeared stiffener technique. According to the Galerkin method, the discretized motion equation is obtained. The simultaneous resonance is obtained using the multiple scales method. Finally, the influences of different material and geometrical parameters on the system resonances are investigated comprehensively.

Consideration of Structural Damage of Fresh Water Tank for 2,600 TEU Container Vessel (2,600 TEU Container Vessel 의 Fresh Water Tank 구조손상 사례 고찰)

  • Shin Sung-Kwang;Ahn Hyung-Joon;Choi Eui-keol;Koh Myeong-Seob;Leem Hyo-Kwan
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.216-221
    • /
    • 2005
  • Many tanks such as a fresh water tank, an aft peak tank and oil tanks are arranged in the engine room and aft part areas of the ship. By added mass effect of the fluid inside the tanks, the natural frequency will be changed according to filling height of the tank. For this reason, there is possibility of occurrence of excessive vibration by resonance between natural frequencies of local structure and excitation frequencies of the propeller or main engine. Therefore, calculation of natural frequencies is required for structure for many types of tank which are contacting with water or oil to consider added mass effect for anti-resonance design at design stage. In this study, a case of structure damage on the fresh water tank for 2600 TEU container vessel is introduced. In addition, natural frequency analysis and vibration measurement have been performed to investigate vibration characteristics for excessive vibration control.

  • PDF

Structural design of a piezoelectric flextentional deep-water sonar transducer using a coupled FE-BEM (결합형 유한요소-경계요소 기법을 사용한 심해저용 압전형 유연성 쏘나 트랜스듀서의 구조 설계)

  • Jarng, Soon-Suck;Chung, Woon-Kwan
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.5
    • /
    • pp.377-387
    • /
    • 1999
  • A piezoelectric flextentional deep-water sonar transducer has been designed using a coupled FE-HEM. The dynamics of the sonar transducer is modelled in three dimensions and is analyzed with external electrical excitation conditions. Different results are available such as steady-state frequency response for TX displacement modes, directivity patterns, resonance frequencies, TVRs. While the conventional barrel-stave typed sonar transducer of the piezoelectric material is designed, the external surface of the transducer is modified in order to allow the same hydrostatic pressure to be applied onto the inner and the outer surfaces of the transducer. With this modification for deep-water application, a new resonance mode is generated at lower frequency. This lower resonance mode can be adjusted according to the degree of the outer surface modification.

  • PDF

Study on Analysis of Vibration Characteristics and Modal Test for a Quad-Rotor Drone (쿼드로터형 드론의 진동특성 분석 및 실험에 관한 연구)

  • Kim, Minsong;Kim, Jaenam;Byun, Youngseop;Kim, Jeong;Kang, Beomsoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.9
    • /
    • pp.707-714
    • /
    • 2016
  • This paper describes analysis results of vibration characteristics and modal test for a small-scale quad-rotor drone. The rotor arm has a slender body with a propeller and motor at its tip. Rotor system generates excitation for an unbalanced mass. Therefore, the drone platform is involved in the possibility of resonance. For advance identification of the possibility of resonance, confirmation of eigen-mode being closest to the propeller operation range is necessary. Material properties of CFRP tubes used for the rotor arm were acquired by finding the natural frequency based on Rayleigh method. A simplified quad-rotor FE model consisting of rotor arm assembly with tip mass was built to perform numerical analysis, and a free-free boundary condition was applied to provide flight status. Modal tests for the actual platform with impact hammer instrument were performed to verify analysis results. Separation margin from hazardous eigen-mode was checked on the propeller operation range.

Models and Experiments for the Main Topologies of MRC-WPT Systems

  • Yang, Mingbo;Wang, Peng;Guan, Yanzhi;Yang, Zhenfeng
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1694-1706
    • /
    • 2017
  • Models and experiments for magnetic resonance coupling wireless power transmission (MRC-WPT) topologies such as the chain topology and branch topology are studied in this paper. Coupling mode theory based energy resonance models are built for the two topologies. Complete energy resonance models including input items, loss coefficients, and coupling coefficients are built for the two topologies. The storage and the oscillation model of the resonant energy are built in the time domain. The effect of the excitation item, loss item, and coupling coefficients on MRC systems are provided in detail. By solving the energy oscillation time domain model, distance enhancing models are established for the chain topology, and energy relocating models are established for the branch topology. Under the assumption that there are no couplings between every other coil or between loads, the maximum transmission capacity conditions are found for the chain topology, and energy distribution models are established for the branch topology. A MRC-WPT experiment was carried out for the verification of the above model. The maximum transmission distance enhancement condition for the chain topology, and the energy allocation model for the branch topology were verified by experiments.

Efficient baseline suppression via TIP and modified DEPTH

  • Hyun, Namgoong
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.26 no.4
    • /
    • pp.51-58
    • /
    • 2022
  • The baseline flattened NMR spectrum has been achieved by several methodologies including pulse manipulation with a series of phase cycling. The background signal inherent in the probe is also main source of baseline distortion both in solution and solid NMR. The simple direct polarization with 90° pulse flipping the magnetization from the z-axis onto the receiver coil requires the strong rf pulse enough to encompass the wide frequency range to excite the resonance of interest nuclei. Albeit the perfect polarization 90° pulse, the signal from the unwanted magnetic fields such as background signal can not be completely suppressed by suitable phase cycling. Moreover, slowly baseline wiggling signal from the low 𝛾 nuclei is not easy to eliminate with multiple pulse manipulation. So there is still need to contrive the new scheme for that purpose in an adroit manner. In this article new triple pulse excitation schemes for TIP and modified DEPTH pulse sequence are analytically examined in terms of arbitrary phase and flip angle of pulse. The suitable phase cycling for these pulse trains is necessary for the good sensitivity and resolution of the spectrum. It is observed that the 13C sensitivity TIP experiment is almost equal to the CP/MAS with modified DEPTH sequence, both of which are applicable to both solid and solution state NMR.