• Title/Summary/Keyword: resonance efficiency

Search Result 494, Processing Time 0.03 seconds

Strategy for Determining the Structures of Large Biomolecules using the Torsion Angle Dynamics of CYANA

  • Jee, Jun-Goo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.20 no.4
    • /
    • pp.102-108
    • /
    • 2016
  • With the rapid increase of data on protein-protein interactions, the need for delineating the 3D structures of huge protein complexes has increased. The protocols for determining nuclear magnetic resonance (NMR) structure can be applied to modeling complex structures coupled with sparse experimental restraints. In this report, I suggest the use of multiple rigid bodies for improving the efficiency of NMR-assisted structure modeling of huge complexes using CYANA. By preparing a region of known structure as a new type of residue that has no torsion angle, one can facilitate the search of the conformational spaces. This method has a distinct advantage over the rigidification of a region with synthetic distance restraints, particularly for the calculation of huge molecules. I have demonstrated the idea with calculations of decaubiquitins that are linked via Lys6, Lys11, Lys27, Lys29, Lys33, Lys48, or Lys63, or head to tail. Here, the ubiquitin region consisting of residues 1-70 was treated as a rigid body with a new residue. The efficiency of the calculation was further demonstrated in Lys48-linked decaubiquitin with ambiguous distance restraints. The approach can be readily extended to either protein-protein complexes or large proteins consisting of several domains.

Heaving displacement amplification characteristics of a power buoy in shoaling water with insufficient draft

  • Kweon, Hyuck-Min;Cho, Il-Hyoung;Cho, Hong-Yeon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.614-624
    • /
    • 2013
  • The resonance power buoy is a convincing tool that can increase the extraction efficiency of wave energy. The buoy needs a corresponding draft, to move in resonance with waves within the peak frequency band where wave energy is concentrated. However, it must still be clarified if the buoy acts as an effective displacement amplifier, when there is insufficient water depth. In this study, the vertical displacement of a circular cylinder-type buoy was calculated, with the spectrum data observed in a real shallow sea as the external wave force, and with the corresponding draft, according to the mode frequency of normal waves. Such numerical investigation result, without considering Power Take-Off (PTO) damping, confirmed that the area of the heave responses spectrum can be amplified by up to about tenfold, compared with the wave energy spectrum, if the draft corresponds to the peak frequency, even with insufficient water depth. Moreover, the amplification factor of the buoy varied, according to the seasonal changes in the wave spectra.

Analysis of reflection-coefficient by wireless power transmission using superconducting coils

  • Jeong, In-Sung;Choi, Hyo-Sang;Chung, Dong-Chul
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.2
    • /
    • pp.29-32
    • /
    • 2017
  • The use of electronic devices such as mobile phones and tablet PCs has increased of late. However, the power which is supplied through wires has a limitation of the free use of devices and portability. Magnetic-resonance wireless power transfer (WPT) can achieve increased transfer distance and efficiency compared to the existing electromagnetic inductive coupling. A superconducting coil can be applied to increase the efficiency and distance of magnetic-resonance WPT. As superconducting coils have lower resistance than copper coils, they can increase the quality factor (Q-factor) and can overcome the limitations of magnetic-resonance WPT. In this study, copper coils were made from ordinary copper under the same condition as the superconducting coils for a comparison experiment. Superconducting coils use liquid nitrogen to keep the critical temperature. As there is a difference of medium between liquid nitrogen and air, liquid nitrogen was also used in the normal conductor coil to compare the experiment with under the same condition. It was confirmed that superconducting coils have a lower reflection-coefficient($S_{11}$) than the normal conductor coils.

Modelling the Mode Behavior of Circular Vertical-Cavity Surface-Emitting Laser

  • Ho, Kwang-Chun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.4 no.2
    • /
    • pp.22-27
    • /
    • 2012
  • The design characteristics of circular vertical-cavity surface-emitting lasers are studied by using a newly developed equivalent network. Optical parameters, such as the stop-band or the reflectivity of periodic mirrors and the resonance wavelength, are explored for the design of these structures. To evaluate the differential quantum efficiency and the threshold current density, a transverse resonance condition of modal transmission-line theory is also utilized. This approach dramatically reduces the computational time as well as gives an explicit insight to explore the optical characteristics of circular vertical-cavity surface-emitting lasers (VCSELs).

A New Coil Set with Core for Magnetic Resonant Systems (코어를 사용한 새로운 자기공진형 코일구조)

  • Huh, Jin;Rim, Chun-Taek
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.625-626
    • /
    • 2012
  • A coupled magnetic resonance system (CMRS) using compact coil sets with core driven by a class-E inverter was proposed. The source and load coils of conventional CMRS were replaced with two coils containing core so that the system can be quite compact in size and easy to design due to a resonance frequency for all resonant tanks regardless of coupling factor. Experiments for 500 kHz switching frequency show 40% system efficiency.

  • PDF

A Study on the Optimum Design of Resonance Intake System For 4 Cylinder Diesel Engines (4실린더 디젤기관 공명 흡기계의 최적설계에 관한 연구)

  • 남정길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.836-843
    • /
    • 1998
  • In this paper effects of resonator within intake manifold system on volumetric efficiency were investigated n the 4-cylinder and 4 stroke Diesel Engines. The effects of resonator system were analyzed on resonant speed and on volumetric efficiency for a complicated intake system with resonator was confirmed. And the optimum design method of the resonant system which had the overall high and flat characteristic of volumetric efficiecncy was proposed.

  • PDF

A study on the efficiency characteristics for LLC resonant half-bridge converter with synchronous rectifier (동기정류기를 적용한 공진형 하프브릿지의 효율특성에 관한연구)

  • Lee, Gwang-Taek;Ahn, Tae-Young
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.289-291
    • /
    • 2005
  • In this paper results of the experiment which used LLC resonant half bridge DC-DC converter to a portable electrical equipment. LLC resonance Half Bridge DC-DC converter which was used in this experiment improved an efficiency because it reduced switching, conduction losses and with synchronous rectifier. As a result of the experiment, this proposed converter could verified an increase of 2% to the efficiency more than diode rectifier.

  • PDF

Dosimetry for Resonance-Based Wireless Power Transfer Charging of Electric Vehicles

  • Park, Sang-Wook
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.3
    • /
    • pp.129-133
    • /
    • 2015
  • This paper presents the dosimetry of a resonance-based wireless power transfer (RBWPT) system for electric vehicles applications. The compact RBWPT system is designed to transfer power at 150-mm distance. The electric and magnetic fields generated by the RBWPT system and the specific absorption rate in the human body model, which stands around the system, are calculated. These analyses are conducted in two cases: the alignment and the misalignment between the transmitter and the receiver. The matching loops are adjusted to maximize the power transfer efficiency of the RBWPT system for the misalignment condition. When the two cases were compared for the best power transfer efficiency, the specific absorption rates (SAR) in the misalignment case were larger than those in the alignment case. The dosimetric results are discussed in relation to the international safety guidelines.

The Stator Analysis and Design of Ring Type Ultrasonic Motor (링형 초음파모터의 고정자 해석 및 설계)

  • Yoon, Shin-Yong;Baek, Soo-Hyun;Kim, Yong;Kim, Cherl-Jin;Kim, Hyun-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.10
    • /
    • pp.484-490
    • /
    • 2003
  • This paper describes with the stator analysis and design of a ring type ultrasonic motor. The design for piezoelectric ceramic and elastic body of stator were calculated by using the finite element method (FEM) that consider the resonance frequency, vibration mode and coupling efficiency. Namely, such results were acquired the calculation result of the piezoelectric ceramic thickness 0.5[mm], elastic body thickness 2.0[mm], resonance frequency 51.8[kHz], vibration mode 7 order and coupling efficient 12.5[%], the outer and inner diameter of vibrator 50[mm], 38[m]. On the basis of such result, the ring type ultrasonic motor was manufactured. Also for driving characteristics of ring type ultrasonic motor, 2-phase inverter was constructed. Then the propriety of this paper was established from comparision of the simulation and an experiment results of the ring type ultrasonic motor.

Study on resonant electron cyclotron heating by OSXB double mode conversion at the W7-X stellarator

  • Adlparvar, S.;Miraboutalebi, S.;Kiai, S.M. Sadat;Rajaee, L.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1106-1111
    • /
    • 2018
  • Electromagnetic waves potentially have been used to heat overdense nuclear fusion plasmas through a double mode conversion from ordinary to slow extraordinary and finally to Electron Bernstein Wave (EBW) modes, OSXB. This scheme is efficient and has not any plasma density limit of electron cyclotron resonance heating due to cut-off layer. The efficiency of conversion depends on the isotropic launching angles of the microwaves with the plasma parameters. In this article, a two-step mode conversions of OSXB power transmission efficiency affected by the fast extraordinary (FX) loses at upper hybrid frequency are studied. In addition, the kinetic (hot) dispersion relation of a overdense plasma in a full wave analysis of a OSXB in Wendelstein 7X (W7-X) stellarator plasma has been numerically simulated. The influence of plasma dependent parameters such as finite Larmor radius, electron thermal velocity and electron cyclotron frequency are represented.