• Title/Summary/Keyword: resonance capture

Search Result 43, Processing Time 0.03 seconds

Energy Calibration for Neutron Capture Resonance of Natural Sm by Using 46-MeV Electron Linear Accelerator

  • Lee, Jae-Hong;Lee, Sam-Yol
    • Journal of the Korean Society of Radiology
    • /
    • v.1 no.2
    • /
    • pp.31-35
    • /
    • 2007
  • Energy calibration is important to identify accurate neutron capture resonance energy in the neutron TOF (Time-of-Flight) experiment. In present study, the accurate neutron capture resonance energies of natural Sm were measured by using a 46-MeV electron linear accelerator (linac) at the Research Reactor Institute, Kyoto University(KURRI). The BGO spectrometer were adopted for measurement the prompt capture gamma-ray of the sample. To obtain energy calibration curve, resonance energy of a gold sample used as standard resonance energy Mughabghab's data (From neutron resonance parameters data). Previous data (by Mughabghab) of natural Sm sample have been compared with the present result.

  • PDF

Resonance Capture for a Mercurian Orbiter in the Vicinity of Sun

  • Khattab, Elamira Hend;El-Salam, Fawzy Ahmed Abd;Rahoma, Walid A.
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.2
    • /
    • pp.93-103
    • /
    • 2021
  • In this work, the problem of resonance caused by some gravitational potentials due to Mercury and a third body, namely the Sun, together with some non-gravitational perturbations, specifically coronal mass ejections and solar wind in addition to radiation pressure, are investigated. Some simplifying assumptions without loss of accuracy are employed. The considered force model is constructed. Then the Delaunay canonical set is introduced. The Hamiltonian of the problem is obtained then it is expressed in terms of the Deluanay canonical set. The Hamiltonian is re-ordered to adopt it to the perturbation technique used to solve the problem. The Lie transform method is surveyed. The Hamiltonian is doubly averaged. The resonance capture is investigated. Finally, some numerical simulations are illustrated and are analyzed. Many resonant inclinations are revealed.

Estimation of Neutron Absorption Ratio of Energy Dependent Function for $^{157}Gd$ in Energy Region from 0.003 to 100 eV by MCNP-4B Code

  • Lee, Sam-Yol
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.3
    • /
    • pp.23-25
    • /
    • 2009
  • Gd-157 material has very large neutron capture cross section in the thermal region. So it is very useful to shield material for thermal neutrons. Futhermore, in the neutron capture experiment and calculation, the neutron absorption and scattering are very important. Especially these effects are conspicuous in the resonance energy region and below the thermal energy region. In the case of very narrow resonance, the effect of scattering is to be more considerable factor. In the present study, we obtained energy dependent neutron absorption ratios of natural indium in energy region from 0.003 to 100 keV by MCNP-4B Code. The coefficients for neutron absorption was calculated for circular type and 1 mm thickness. In the lower energy region, neutron absorption is larger than higher region, because of large capture cross section (1/v). Furthermore it seems very different neutron absorption in the large resonance energy region. These results are very useful to decide the thickness of sample and shielding materials.

  • PDF

A Study on Neutron Resonance Energy of 180Ta below 1eV Energy (1 eV 이하 에너지 영역에서의 180Ta 동위원소의 중성자공명에 대한 연구)

  • Lee, Samyol
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.6
    • /
    • pp.287-292
    • /
    • 2014
  • In this study, the neutron capture cross section of $^{180}Ta$(natural existence ratio: 0.012 %) obtain by measuring has been compared with the evaluated data for the capture data. In generally, the neutron capture resonance is defined as Breit-Wigner formula. The formula consists of the resonance parameters such as neutron width, total width and neutron width. However in the case of $^{180}Ta$, these are very poor experimental neutron capture cross section data and resonance information in below 10 eV. Therefore, in the study, we analyzed the neutron resonance of $^{180}Ta$ with the measuring the prompt gamma-ray from the sample. And the resonance was compared with the evaluated data by Mughabghab, ENDF/B-VII, JEFF-3.1 and TENDL 2012. Neutron sources from photonuclear reaction with 46-MeV electron linear accelerator at Research Reactor Institute, Kyoto University used for cross section measurement of $^{180}Ta(n,{\gamma})^{181}Ta$ reaction. $BGO(Bi_4Ge_3O_{12})$ scintillation detectors used for measurement of the prompt gamma ray from the $^{180}Ta(n,{\gamma})^{181}Ta$ reaction. The BGO spectrometer was composed geometrically as total energy absorption detector.

Effect of Internal Fluid Resonance on the Performance of a Floating OWC Device

  • Cho, Il Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.216-228
    • /
    • 2021
  • In the present study, the performance of a floating oscillating water column (OWC) device has been studied in regular waves. The OWC model has the shape of a hollow cylinder. The linear potential theory is assumed, and a matched eigenfunction expansion method(MEEM) is applied for solving the diffraction and radiation problems. The radiation problem involves the radiation of waves by the heaving motion of a floating OWC device and the oscillating pressure in the air chamber. The characteristics of the exciting forces, hydrodynamic forces, flow rate, air pressure in the chamber, and heave motion response are investigated with various system parameters, such as the inner radius, draft of an OWC, and turbine constant. The efficiency of a floating OWC device is estimated in connection with the extracted wave power and capture width. Specifically, the piston-mode resonance in an internal fluid region plays an important role in the performance of a floating OWC device, along with the heave motion resonance. The developed prediction tool will help determine the various design parameters affecting the performance of a floating OWC device in waves.

Neutron Capture Resonance Energy Identification of Indium by Time-of-Flight Method (중성자 비행시간법을 이용한 인듐의 공명에너지 동정에 관한 연구)

  • Lee, Sam-Yol
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.5
    • /
    • pp.403-408
    • /
    • 2012
  • Prompt gamma ray from the natural Indium sample was measured by using an assembly of BGO($Bi_4Ge_3O_{12}$) scintillation detectors in the neutron energy region from 1 to 300 eV. The assembly was composed of pieces of BGO. The spectrometer was composed geometrically as total energy absorption detector. 46-MeV electron linear accelerator which is located at Research Reactor Institute, Kyoto University used for neutron sources from photonuclear reaction. The measurement of the neutron capture resonances was performed to below neutron energy 1 keV, because of strong X-ray effect from photonuclear reaction in Ta target and short distance from the target to an assembly of detector. The distance of neutron flight path is $12.7{\pm}0.02m$. The large neutron capture resonances were measured from 1 to 400 eV. The energy in the capture resonance was compared with the evaluated values. The large resonances were seen in the present measurement. General agreement can be seen between the present measurement and the previous evaluated data in relevant energy region. In the present study, we measured the continues resonance structure above 1 keV neutron energy region. 91.49 eV new neutron capture resonance was found in present measurement.

Comparable Electron Capture Efficiencies for Various Protonated Sites on the 3rd Generation Poly(Propylene Imine) Dendrimer Ions: Applications by SORI-CAD and Electron Capture Dissociation Mass Spectrometry (ECD MS)

  • Han, Sang-Yun;Lee, Sun-Young;Oh, Han-Bin
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.5
    • /
    • pp.740-746
    • /
    • 2005
  • In this article, we report the tandem mass spectrometry investigations for the electron capture efficiencies of the protons belonging to the different locations (generations) in a poly(propylene imine) dendrimer with three layers of a repeat unit (named as the third generation dendrimer). The employed tandem mass spectrometry methods include SORI-CAD (sustained off-resonance irradiation collisional activation dissociation) and ECD(electron capture dissociation) mass spectrometry. We obtained SORI-CAD spectra for the dendrimer ions in the different charge states, ranging from 2+ to 4+. The analysis of fragmentation sites provides the information as to where the protons are distributed among various generations of the dendrimer. Based upon this, a new strategy to study the electron capture efficiencies of the protons is utilized to examine a new type of triplycharged ions by SORI-CAD, i.e., the 3+ ions generated from the charge reduction of the native 4+ ions by ECD: (M+4H)$^{4+}\;+\;e^-\;{\rightarrow}$ (M+4H)$^{3+\bullet}$ ${\rightarrow}\;({H^{\bullet}}_{ejected}$) + (M+3H)$^{3+}\;\rightarrow$ CAD. Interestingly, comparison of these four SORICAD spectra indicates that the proton distribution in the charge-reduced 3+ ions is very close to that in the native 4+ ions. It further suggests that in this synthetic polymer ($\sim$1.7 kDa) with an artificial architecture, the electron capture efficiencies of the protons are actually insensitive to where they are located in the molecule. This is somewhat contradictory to common expectations that the protons in the inner generations may not be well exposed to the incoming electron irradiation as much as the outer ones are, thus may be less efficient for electron capture. This finding may carry some implications for the case of medium sized peptide ions with similar masses, which are known to show no obvious site-specific fragmentations in ECD MS.

Immunoaffinity Characteristics of Exosomes from Breast Cancer Cells Using Surface Plasmon Resonance Spectroscopy

  • Sohn, Young-Soo;Na, Wonhwi;Jang, Dae-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.355-359
    • /
    • 2019
  • Exosomes, known as nanoscale extracellular vesicles in the range of 30-150 nm, are known to contain clinically significant information. However, there is still insufficient information on exosomal membrane proteins for cancer diagnosis. In this work, we investigated the characteristics of the membrane proteins of exosomes shed by cultured breast cancer cell lines using a surface plasmon resonance (SPR) spectroscopy and pre-activated alkanethiols modified sensor chips. The antibodies of breast cancer biomarkers such as MCU-16, EpCAM, CD24, ErbB2, and CA19-9 were immobilized on the pre-activated alkanethiols surfaces without any activation steps. The purified exosomes were loaded onto each antibody surface. The affinity rank of the antibody surfaces was decided by the relative capture efficiency factors for the exosomes. In addition, an antibody with a relative capture efficiency close to 100% was tested with exosome concentration levels of 104/µl, 105/µl, and 106/µl for quantitative analysis.

Resonance Integral of Neptunium(237Np) from Energy Dependent Differential Neutron Capture Cross-Section by Using the Linac TOF Method and C6D6 Scintillation Spectrometer

  • Lee, Sam-Yol
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.4
    • /
    • pp.217-221
    • /
    • 2011
  • $^{237}Np$ is very important material in the fission products of nuclear reactors. Resonance integral(RI) tests of this material is necessary to check between the experiments and the evaluated data. Such feedback to the evaluated data is very important to correct data and improve of codes. The RI for the $^{237}Np(n,{\gamma})^{238}Np$ reaction were measured by using the 46-MeV electron linear accelerator (linac) at the Research Reactor Institute, Kyoto University (KURRI). The measurement was performed in the energy region from 0.005 eV and 10 keV. RI obtained as 804.7 barns, compared with those of the evaluated data in JENDL-4.0 and Mughabghab.

A Study on Neutron Resonance Energy of Tantalum by 46-MeV Electron Linac TOF Method (46-MeV 전자선형가속기의 TOF 방법을 이용한 탄탈의 중성자 공명 에너지 분석에 관한 연구)

  • Lee, Samyol
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.3
    • /
    • pp.245-249
    • /
    • 2013
  • Neutron sources from photonuclear reaction with 46-MeV electron linear accelerator at Research Reactor Institute, Kyoto University used for resonance energy measurement of natural tantalum. BGO($Bi_4Ge_3O_{12}$) scintillation detectors used for measurement of the prompt gamma ray from the natural tantalum sample. The BGO spectrometer was composed geometrically as total energy absorption detector. The electric signal from the spectrometer was analyzed for TOF(Time-of-Flight) spectrum which is used identification of neutron capture resonance energy. In this study, the neutron energy region is from 1 to 200 eV, because of strong X-ray effect produced photonuclear reaction in Ta target, the measurement was performed to below 1 keV energy region. The resonance energy was compared with the evaluated values(ENDF/B-VI, Mughabghab). All of the resonances from 4.28 ~ 200 eV were seen in the present measurement except 144.3 eV resonance.