• Title/Summary/Keyword: resistor type

Search Result 141, Processing Time 0.03 seconds

Operating Characteristics of Transformer Type SFCL with Resistor in Tertiary Winding (3차 권선에 저항을 사용한 변압기형 전류제한기의 동작 특성)

  • Choi, Byoung-Hwan;Han, Byoung-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.12
    • /
    • pp.1111-1117
    • /
    • 2008
  • A transformer type superconducting fault current limiter (SFCL) is one of the fault current limiters which have been proposed to reduce the fault current in the transmission lines. This paper proposes the new circuit configuration of a transformer type SFCL and also investigates the operating characteristics of the transformer type SFCL containig the resistor in the tertiary winding. The proposed SFCL contains the resistor in the tertiary winding. The newly inserted resistor can divert the power which the High-Tc superconducting has to bear. Because the resistor in the tertiary winding relieves the power of the High-Tc superconducting, it is possible that the proposed transformer type SFCL can decrease the more larger fault current than the conventional SFCL with the same High-Tc superconducting. And the cost of the proposed transformer type SFCL can be reduced.

Investigation on Fabrication Process and Tolerance of Resistance Body with A Uniform Thickness Shape on Organic Substrate for Application of Embedded Resistor (Embedded Resistor 적용을 위한 Organic 기판 위에 균일한 두께의 형상을 갖는 저항체의 제조공정과 편차에 대한 조사)

  • Park, Hwa-Sun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.4
    • /
    • pp.72-77
    • /
    • 2008
  • This paper investgated on fabrication process and tolerance of resistance body with a uniform thickness formed by the process of cavity type on organic substrate for application of embedded resistor. To improve the tolerance of resistance value according to a position of PCB cause by conventional screen printing, we introduced the process of cavity type from organic substrate. A resistor with a desired shape and volume was precisely formed by the process of cavity using a resistor paste and screen printing. This method can increase PCB's productivity by shortening its production time because process conditions of a screen prining device can be set quickly without any affection on its position accuracy.

Electrical Properties of Temperature Coefficient of Resistance and Heat Radiation Structure Design for Shunt Fixed Resistor (저항 온도계수와 방열 구조설계에 따른 션트 고정 저항의 전기적 특성)

  • Kim, Eun Min;Kim, Hyeon Chang;Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.2
    • /
    • pp.107-111
    • /
    • 2018
  • In this study, we designed the temperature coefficient of resistance (TCR) and heat radiation properties of shunt fixed resistors by adjusting the atomic composition of a metal alloy resistor, and fabricated a resistor that satisfied the designed properties. Resistors with similar atomic composition of copper and nickel showed low TCR and excellent shunt fixed resistor properties such as short-time overload, rated load, humidity load, and high temperature load. Finally, we expect that improved sensor accuracy will be obtained in current-distribution-type shunt fixed resistor for IoT sensors by designing the atomic composition of the metal alloy resistor proposed in this work.

Pulse energy high Power test of metal film resistor (메탈 필름 저항의 펄스 대전력 시험)

  • Son, Y.G.;Jang, S.D.;Kwon, S.J.;Oh, J.S.;Cho, M.H.;Lee, K.T.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2103-2105
    • /
    • 2005
  • Metal film type of resistor have been tested to invest maximum usable power at the pulsed high voltage and pulsed high current. Experiments were carried out using capacitor charging power supply and dump switch. Pulsed amplitude were varied from 1kV to 25kV. The peak current reached was 1kA. Datasheet are given for the limited pulsed power and energy for metal film type of resistor in nanosecond and microsecond time range. The experimental investigation of the threshold loading of the resistor in the high current and voltage pulsed mode has shown that the process of destruction of resistor has specific features for each mode. The mechanisms of failure and destruction of resistors under action of high-voltage and high-current pulses are discussed.

  • PDF

Breakdown Characteristics of Insulators for a Resistor Type HTS Fault Current Limiter (저항형 고온초전도 한류기용 절연체의 절연 특성)

  • 백승명;류엔반둥;김상현
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.1
    • /
    • pp.48-52
    • /
    • 2004
  • Breakdown characteristics of insulator-liquid nitrogen ($LN_2$) composite insulation for resistor type High $T_c$/ superconducting fault current limiter (HTSFCL) under ac and impulse voltage in $LN_2$ has been studied using model electrode systems. Electrodes for model electrode systems were made of SUS 304 contacted fiberglass reinforced plastic (FRP) and Au coated sapphire. The breakdown characteristics of model electrode systems were investigated experimentally for FRP thickness ranging from 1 mm to 5 mm. surface distance ranging from 2.5 mm to 7 mm and electrode gap ranging from 1 to 5 mm. The experimental data suggested that the breakdown voltage of model electrode systems in $LN_2$ is highly dependent on the surface distance, electrode gap as well as on the FRP thickness. Also, we had observed discharge traces and puncture due to high-voltage 60-Hz AC stress.

A Study of B-implanted n Type Si Epi Resistor for the Fabrication of Thermal Stable Pressure Sensor (열적 안정한 압력센서 제작을 위한 보론(B) 이온 주입 n형 Si 에피 전극 연구)

  • Choi, Kyeong-Keun;Kang, Moon Sik
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.40-46
    • /
    • 2018
  • In this paper, we focus on optimization of a boron ($^{11}B$)-implanted n type Si epi substrate for obtaining near-zero temperature coefficient of resistance (TCR) at temperature range from 25 to $125^{\circ}C$. The $^{11}B$-implantation on the N type-Si epi substrate formed isolation from the rest of the N-type Si by the depletion region of a PN junction. The TCR increased as the temperature of rapid thermal anneal (RTA) was increased at the temperature range from $900^{\circ}C$ to $1000^{\circ}C$ for the $p^+$ contact with implantation at dose of $1E16/cm^2$, but sheet resistance of this film was decreased. After the optimization of anneal process condition, the TCR of $1126.7{\pm}30.3$ (ppm/K) was obtained for the $p^-$ resistor-COB package chips contained $p^+$ contact with the implantation of $5E14/cm^2$. This shows the potential of the $^{11}B$-implanted n type Si epi substrate as a resistor for pressure sensor in thermal stable environment applications..

Stabilization of Thermo Electromotive Force of Power Type Shunt Resistor for Mass Storage Secondary Battery Management System (대용량 이차전지 관리 시스템용 전력형 션트저항의 열기전력 안정화)

  • Kim, Eun Min;Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.6
    • /
    • pp.376-380
    • /
    • 2017
  • In this paper, we prepared a metal alloy resistor with stable thermal electro motive force (thermal EMF) as well as a low temperature coefficient of resistance (TCR) by adjusting the manganese proportion from 3 to 12 wt% in the Cu-Mn-Ni alloy. Composition of the fabricated metal alloy was investigated using energy dispersive X-ray (EDX) analysis. The TCR of each sample was measured as 44.56, 40.54, 35.60, and 31.56 ppm for Cu-3Mn-2Ni, Cu-5Mn-2Ni, Cu-10Mn-2Ni, and Cu-12Mn-2Ni, respectively. All the resistor samples were available for the F grade (${\pm}1%$ of the allowable error of resistance) high-precision resistor. All the samples satisfied the baseline of high thermal EMF (under 3 mV at $60^{\circ}C$); however, Cu-3Mn-2Ni and Cu-5Mn-2Ni satisfied the baseline of low thermal EMF (under 0.3 mV at $25^{\circ}C$). We were thus able to design and fabricate the metal alloy resistor of Cu-3Mn-2Ni and Cu-5Mn-2Ni to have low TCR and stable thermal EMF at the same time.

A Study on the Conversion Efficiency of Rectenna for Microwave Wireless Power Transmission System (Rectenna의 형태와 방향변화에 따른 변환효율 분석에 관한 연구)

  • 윤동기;박양하김관호이영철
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.189-192
    • /
    • 1998
  • In this paper, we analyzed Microwave-DC conversion efficiency for the rectennas and it's position change. Rectenna consist of a two major parts, receiveing antenna and rectifying circuits. We made two types of 2.45C rectennas which the dipole and the patch antenna. Rectifying circuit is a GaAs-schottky diode with a large forward current and reverse breakdown voltage. The results of RF-DC conversion efficiency for two rectennas, patch type has 75.6% efficiency with 400$\Omega$ load resistor and dipole type has 69.75% efficiency with 360$\Omega$ load resistor. When the rectennas has optimal load resistor, Rectenna efficiency shows of $\pm10%$ at $70^{\circ}$~$110^{\circ}$ position.

  • PDF

Resonance characteristics and electrical properties of PZT-piezoelectric transformer (PZT계 압전변압기의 공진특성과 전기적 성질)

  • 박순태;정수태;이종헌
    • Electrical & Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.27-34
    • /
    • 1995
  • The analysis of nonlinear equivalent circuit and the resonance characteristics of input current and output voltage were simulated, and their electrical properties are discussed in the transverse-type piezoelectric ceramic transformer. The nonlinear resonance characteristics of input current and output voltage showed by the thermal effect due to a higher driving current, the nonlinearity increased greatly as driving current increased. When load resistor was 100[M.ohm.], the nonlinear coefficient was -1.3. The nonlinear resonance curve of input current and output voltage for a variation of input voltage and load resistor agreed with the discussed theory. The output voltage increased nearly proportioned to input voltage when load resistors were below 50[M.ohm.], the voltage step-up ratio decreased when a load resistor was 100[M.ohm.] and their maximum value was 950.

  • PDF

A study on the development of constant temperature hot wire type air flow meter for automobiles (자동차용 정온도 열선식 공기유량계의 개발에 관한 연구)

  • 조성권;유정열;고상근;김동성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2407-2414
    • /
    • 1992
  • Constant temperature hot wire air flow meter for automobiles requires temperature compensation system because hot wire output signal is sensitive to ambient temperature variations as well as fluid velocity. The objectives of the present study are to design an air flow meter circuit which is capable of compensating the hot wire output signal for ambient temperature variations and to investigate the mechanism of such temperature compensation. This circuit is composed of platinum hot wire, platinum resistor, two variable resistors, a constant resistor and a DC-amplifier. In particular, by simply replacing a constant resistor in one of the bridge arms of the conventional circuit with platinum resistor and a variable resistor for the purpose of temperature compensation, the deviation of output signal with respect to ambient temperature variations between 27deg. C 70deg. C could be reduced to less than 2.5% for mass flow rate and to less than 5% for velocity respectively. The mechanism of temperature compensation against ambient temperature variations was explained by means of measuring the heat transfer coefficient with hot wire temperature variations and analyzing and analyzing conventional empirical equations qualitatively.