• Title/Summary/Keyword: resistive superconducting fault current limiter

Search Result 125, Processing Time 0.032 seconds

A Study on the Evaluation of Distribution Reliability Considering Reliability Model for a Resistive-Type of Superconducting Fault Current Limiter (저항형 초전도한류기의 신뢰도 모델을 적용한 배전계통 신뢰도 평가에 관한 연구)

  • Kim, Sung-Yul;Kim, Wook-Won;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.465-470
    • /
    • 2011
  • Recently fault currents are increasing in a network. It is caused by increase in electric demand and high penetration of distributed generation with renewable energy sources. Moreover, distribution network has become more and more complex as mesh network to improve the distribution system reliability and increase the flexibility and agility of network operation. Accordingly, the fault current will exceed capacity of circuit breakers soon and all the various rational solutions to solve this problem are taken into account. Under these circumstances, superconducting fault current limiter(SFCL) is a new alternative in the viewpoint of technical and economic aspects. This study presents operation processes for a resistive-type of SFCL, and it proposes reliability model for the SFCL. When a SFCL is installed into a network, the contribution of decreased fault currents to failure for distribution equipments can be quantified. As a result, it is expected that a SFCL makes the reliability of adjacent equipments on existing network improve and these changes are analyzed. We propose a methodology to evaluate the reliability in the distribution network where a SFCL is installed considering a reliability model for resistive-type of SFCL and reliability changes for adjacent equipments which are proposed in this paper.

Manufacture and Test of Small-scale Superconducting Fault Current Limiter by Using the Bifilar Winding of Coated Conductor

  • Yang, Seong-Eun;Ahn, Min-Cheol;Park, Dong-Keun;Jang, Dae-Hee;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.4
    • /
    • pp.20-23
    • /
    • 2005
  • The Resistive Type High Temperature Superconducting Fault Current Limiter (SFCL) has been developed in many countries. Until now, materials of the resistive SFCL were Bi2212 bulk and YBCO thin film. Although YBCO coated conductor (CC) has many advantages such as high n-value and critical current for applying resistive SFCL, the resistive SFCL using CC doesn't have developed yet. The bifilar winding type SFCL was manufactured and tested rated on 30V/80A. In normal state, the SFCL using pancake type bifilar winding had very low impedance. When a fault occurred, the SFCL limited the fault current efficiently. Through these results of experiment, large-scale SFCL using CC should be developed in the future.

Resistive Superconducting Fault Current Limiters for Distribution systems using YBCO thin films (YBCO 박막을 이용한 배전급 저항형 초전도 한류기)

  • Lee, B.W.;Park, K.B.;Kang, J.S.;Kim, H.M.;Oh, I.S.;Shim, J.W.;Hyun, O.B.
    • Progress in Superconductivity
    • /
    • v.7 no.2
    • /
    • pp.114-119
    • /
    • 2006
  • High critical current density, high n value, multiple faults endurances, and fast recovery characteristics of YBCO thin films are very attractive characteristics for developing resistive type superconducting fault current limiters. But due to the limited current and voltage ratings of one YBCO module, it is needed to construct series and parallel module connections for high capacity electric networks. Especially for distribution network, more than 30 units should be connected in series to meet voltage level. So in order to construct distribution-level superconducting fault current limiter, simultaneous quench in one YBCO thin films should be realized, and furthermore, quench should be occurred in all fault current limiting units equally to avoid local heating and failures. In this paper, we proposed optimum design of YBCO thin films for fault current limiting module and technical method using shunt resistor to achieve simultaneous quench between multi current limiting units. From the analytical and the experimental results, optimal current path and thickness of shunt material was determined for YBCO thin films and shunt resistor between modules was developed. Finally, 14 kV one phase resistive fault current limiter using multi YBCO thin films was constructed and it was possible to get satisfactory test results.

  • PDF

Application Scheme of Resistive HTS-FCL on Future New Distribution System (저항형 초전도한류기의 미래 배전계통 적용방안)

  • Lee Seung-Ryul;Kim Jlong-Yul;Kim Ho-Yong;Yoon Jae-Young
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.5
    • /
    • pp.212-216
    • /
    • 2005
  • This paper describes the application scheme of resistive HTS-FCL(High Temperature Superconducting-Fault Current Limiter) on future new distribution system. Future new distribution system means the power system to which applies the 22.9kV HTS cable with low-voltage and mass-capacity characteristics replacing the 154kv conventional cable in addition to HTS transformer and HTS-FCL. The fault current of future new distribution system will increase greatly because of the inherent characteristics of HTS transformer/cable and applications of distributed generations and spot networks and so on. This means that the HTS-FCL is necessary to reduce the fault current below the breaking capacity. This paper studies the appropriate location, parameters and the influences of HTS-FCL on future new distribution system. Finally, this paper suggests the reasonable basic parameters of resistive HTS-FCL for future KEPCO new distribution system.

Fabrication and Characteristic Test of Conduction-Cooled Brass Current Leads for a 22.9kV/630A Resistive Superconducting Fault Current Limiter System (22.9kV/630A 저항형 초전도 한류기용 전도-냉각 황동 전류인입선 제작 및 특성 실험)

  • Song, J.B.;Kim, J.H.;Kwon, N.Y.;Kim, Y.W.;Kim, H.M.;Sim, J.;Lee, B.W.;Kim, H.R.;Hyun, O.B.;Lee, H.G.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.3
    • /
    • pp.46-51
    • /
    • 2007
  • The 22.9kV/630A superconducting fault current limiter (SFCL) is developed by the KEPRI-LSIS collaboration group. This resistive SFCL uses three pairs of conduction-cooled current leads. When the SFCL system is in the fault mode. the current flows 20 times more than the steady state. Therefore. it is important that the current lead is designed to have the thermal stability in order to minimize the heat input of the cold-end. This paper presents the design and performance results of a pair of conduction-cooled brass current leads considering both cases that the SFCL system operates at the steady state and the fault current.

Simulation of HTS Resistive Type Superconducting Fault Current Limiter using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 고온초전도 저항형한류기 시뮬레이션)

  • Lee, Jae-Deuk;Park, Min-Won;Yu, In-Kun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1385-1387
    • /
    • 2002
  • In the case of HTS Resistive type Superconducting Fault Current Limiter(SFCL), its possibility has been discussed due to its theory and a simple structure. The Resistive type SFCL can be useful for the protection of the power delivery systems from fault current. Effective simulation scheme that can be applied to the utility network readily and cheaply under various conditions considering the sort of faults, the capacity of systems as well are strongly expected and emphasized among researchers. This paper proposes a simulation skill of resistive type SFCL using PSCAD/EMTDC.

  • PDF

Properties of a Hybrid Type Superconducting Fault Current Limiter using YBa2Cu3O7 Films (YBa2Cu3O7 박막을 이용한 하이브리드형 초전도 사고전류제한기의 특성)

  • Choi, Hyo-Sang;Cho, Yong-Sun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.4
    • /
    • pp.391-397
    • /
    • 2006
  • We present investigations of a hybrid type superconducting fault current limiter (SFCL), which consists of transformers and resistive superconducting elements. The secondary windings of the transformer were separated into several electrically isolated circuits and linked inductively with each other by mutual flux, each of which has a superconducting current limiting element of $YBa_2Cu_3O_7$ (YBCO) stripes as a current limiting element. Simple connection in series of the SFCL elements tends to produce ill-timed quenching because of power dissipation unbalance between SFCL elements. Both electrical isolation and mutual flux linkage of the elements provides a solution to power dissipation unbalance, inducing simultaneous quench and current redistribution of the YBCO films. This design enables to increase the voltage rating of SFCL with given YBCO stripes.

Current Limiting Characteristics according to Applied Voltage Increase of Resistive-type SFCL using YBCO Coated Conductor (YBCO Coated Conductor를 이용한 저항형 전류제한기의 인가전압 증가에 따른 전류제한 특성)

  • Du, Ho-Ik;Kim, Min-Ju;Doo, Seung-Gyu;Kim, Yong-Jin;Lee, Dong-Hyeok;Han, Byoung-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.10
    • /
    • pp.854-859
    • /
    • 2009
  • The YBCO coated conductor is an important element that forms the superconducting power equipment. The first advantage of applying YBCO coated conductor to superconducting power equipment is that it can effectively addresses the normal and fault currents using less quantity of wire than when using Bi tape due to its high critical current density. Second, it can limit the fault current fast because its index value is high. so that the resistance can be produced fast when it is applied to the superconducting current limiting element. Third, the type of stabilization layer that surrounds the YBCO superconductor is selectable and the magnitude of the resistance that is produced from quenching can be adjusted. This study researched into the manufacture of current-limiting element of using YBCO coated conductor, into the characteristics of current limiter that considered by combining the manufactured element with the resistive-type superconducting fault current limiter.

Studies of Simultaneous Quench of Superconducting YBCO Flims for Fault Current Limiter Under the Influence of Magnetic Fields (자기장인가에 따른 YBCO 박막형 한류기의 동시?치 연구)

  • 박권배;이방욱;강종성;오일성;최효상;현옥배
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.84-88
    • /
    • 2002
  • The resistive fault current limiter (SFCL) is a very attractive device for power networks. But it has a serious Problem in using YBCO films for fault current limiter is inhomogeneities caused by imperpect manufacturing. So simultaneous quenches are a difficult problem which elements for current limiting are connected in series for increasing voltage ratings. We investigated extended electric field-current characteristics for current limiting element of YBCO film when O-130mT magnetic field is applied. And quench characteristics were investigated in over all element and between elements of YBCO films. From the experiments, it was shown that applied magnetic fields using solenoid coil induced uniform quench distribution for over all stripes and simultaneous quench in all elements for current limiting of YBCO film was realized. We have achieved resistive fault current limiter of 1.2kV/20A rating using magnetic field.