• Title/Summary/Keyword: resistant weed

Search Result 100, Processing Time 0.025 seconds

Herbicidal properties of picolinafen (제초제 picolinafen의 제초활성 특성)

  • Lee, Jong-Nam;Koo, Suk-Jin;Kim, Do-Soon;Hwang, Ki-Hwan;Kim, Dae-Hwang;Ko, Yong-Kwan;Chung, Keun-Hoe;Ryu, Jae-Wook;Woo, Jae-Chun;Koo, Dong-Wan
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.4
    • /
    • pp.351-358
    • /
    • 2006
  • This study was conducted to evaluate herbicidal properties of picolinafen in terms of crop safety, weed control spectrum, application window, residual efficacy and resistant weed control. Herbicidal phytotoxicity of picolinafen to wheat and barley was greatest when applied at 0 days after sowing (DAS), but decreased significantly as plant growth advanced. Picolinafen showed greater activity against broadleaved weeds than grass weeds. Picolinafen showed highest activity when it was applied at early post emergence timing (5 to 15 DAS), and showed significantly decreased activity at 20 DAS application. The $LT_{50}$ values (the period from application required for residual control by 50%) was 9.3 and 6.5 days against Digitaria ciliaris and Brasica naus at 60 g ai $ha^{-1}$, respectively. Picolinafen showed similar activities against both triazine resistant and sensitive Amaranthus retroflexus. Collectively, picolinafen appeared to have a good fitness to control resistant broad leaved weeds control by early post emergence application.

Crop Injury (Growth Inhibition) Induced by Herbicides and Remedy to Reduce It (제초제(除草劑) 약해발생(藥害發生) 양상(樣相)과 경감대책(輕減對策))

  • Kim, K.U.
    • Korean Journal of Weed Science
    • /
    • v.12 no.3
    • /
    • pp.261-270
    • /
    • 1992
  • Many herbicides that are applied at the soil before weed emergence inhibit plant growth soon after weed germination occurs. Plant growth has been known as an irreversible increase in size as a result of the processes of cell divison and cell enlargement. Herbicides can influence primary growth in which most new plant tissues emerges from meristmatic region by affecting either or both of these processes. Herbicides which have sites of action during interphase($G_1$, S, $G_2$) of cell cycle and cause a subsequent reduction in the observed frequency of mitotic figures can be classified as an inhibitor of mitotic entry. Those herbicides that affect the mitotic sequence(mitosis) by influencing the development of the spindle apparatus or by influencing new cell plate formation should be classified as causing disruption of the mitotic sequence. Sulfonylureas, imidazolinones, chloroacetamides and some others inhibit plant growth by inhibiting the entry of cell into mitosis. The carbamate herbicides asulam, carbetamide, chlorpropham and propham etc. reported to disrupt the mitotic sequence, especially affecting on spindle function, and the dinitroaniline herbicides trifluralin, nitralin, pendimethalin, dinitramine and oryzalin etc. reported to disrupt the mitotic sequence, particularly causing disappearence of microtubles from treated cells due to inhibition of polymerization process. An inhibition of cell enlargement can be made by membrane demage, metabolic changes within cells, or changes in processes necessary for cell yielding. Several herbicides such as diallate, triallate, alachlor, metolachlor and EPTC etc. reported to inhibit cell enlargement, while 2, 4-D has been known to disrupt cell enlargement. One potential danger inherent in the use of soil acting herbicides is that build-up of residues could occur from year to year. In practice, the sort of build-up that would be disastrous is unikely to occur for substances applied at the correct soil concentration. Crop injury caused by soil applied herbicides can be minimized by (1) following the guidance of safe use of herbicides, particularly correct dose at correct time in right crop, (2) by use of safeners which protect crops against injury without protecting any weed ; interactions between herbicides and safeners(antagonists) at target sites do occur probably from the following mechanisms (1) competition for binding site, (2) circumvention of the target site, and (3) compensation of target site, and another mechanism of safener action can be explained by enhancement of glutathione and glutathione related enzyme activity as shown in the protection of rice from pretilachlor injury by safener fenclorim, (3) development of herbicide resistant crops ; development of herbicide-resistant weed biotypes can be explained by either gene pool theory or selection theory which are two most accepted explanations, and on this basis it is likely to develop herbicide-resistant crops of commercial use. Carry-over problems do occur following repeated use of the same herbicide in an extended period of monocropping, and by errors in initial application which lead to accidental and irregular overdosing, and by climatic influence on rates of loss. These problems are usually related to the marked sensitivity of the particular crops to the specific herbicide residues, e.g. wheat/pronamide, barley/napropamid, sugarbeet/ chlorsulfuron, quinclorac/tomato. Relatively-short-residual product, succeeding culture of insensitive crop to specific herbicide, and greater reliance on postemergence herbicide treatments should be alternatives for farmer practices to prevent these problems.

  • PDF

Effective Herbicides for Control of Sulfonylurea-Resistant Monochoria vaginalis in Paddy Field

  • Kuk, Yong-In;Kwon, Oh-Do
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.4
    • /
    • pp.286-291
    • /
    • 2003
  • Monochoria vaginalis is one of the most troublesome resistant weeds in Korean rice culture. Thus, the objectives of this study were to evaluate the response of M. vaginalis resistant to sulfonylurea(SU) herbicides and to determine alternative herbicides for the control of resistant M. vaginalis in direct seeded and transplanted rice culture in Korea. In greenhouse studies, the resistant biotype was 31-, 38-, 3172-, and 7-fold more resistant to ben-sulfuron-methyl, cyclosulfamuron, imazosulfuron, and pyrazosulfuron-ethyl, respectively, than the susceptible biotype, indicating cross-resistance to the SU herbicides used in this study. Non-SU herbicides, butachlor, carfentrazone-ethyl, mefenacet, pretilachlor, pyrazolate, and thiobencarb, several SU herbicide-based mixtures, ethoxysulfuron plus fentrazamide, pyrazosulfuron-ethyl plus pyrazolate plus simetryn, and non-SU herbicide-based mixtures, pyrazolate plus butachlor, pyrazolate plus pretilachlor, simetryn plus molinate, carfentrazone-ethyl plus butachlor, and carfentrazone-ethyl plus thiobencarb can be used to control both the resistant and susceptible biotypes of M. vaginalis when applied before the second leaf stage. In the field experiment, the resistant biotype of M. vaginalis that survived from the paddy fields treated with a SU herbicide-based mixture could effectively be controlled by using mixtures of bentazone plus MCPA, bentazone plus mecoprop-P, and bentazone plus 2,4-D when applied at 2 or 4 main leaves. Our results suggest that the SU-resistant M. vaginalis had not developed multiple resistances to herbicides with different modes of action. In particular, bentazone plus MCPA and bentazone plus mecoprop-P were effective control measures after failure to control resistant M. vaginalis in Korean rice culture.

Current Status and Perspectives of Weed Science in Asia-Pacific Area (아시아·태평양지역의 잡초연구 동향과 전망)

  • Lee, In-Yong;Kim, Jin-Won;Kim, Sang-Su;Yoo, Hong-Jae;Hwang, In-Seong;Lee, Kye-Hwan;Cho, Nam-Gyu;Lee, Dong-Guk;Hwang, Ki-Hwan;Won, Ok Jae;Jia, Weiqiang;Ko, Young-Kwan;Choi, Jung-Sup;Yeom, Hyun-Suk;Park, Kee Woong
    • Weed & Turfgrass Science
    • /
    • v.6 no.4
    • /
    • pp.292-305
    • /
    • 2017
  • This paper provides the current status of weed science and prospects for the development of weed science based on the research trends presented at the 26th Asian Pacific Weed Science Conference in 2017. Approximately 458 researchers from 25 countries, including Korea, participated in the conference and presented 325 papers in 20 research areas. Major research topics were herbicide resistance, herbicide use, herbicide development, weed ecology, allelopathy, weed management, and exotic weeds. Particularly, there were many presentations and interesting to researchers about the development and use of new herbicides, such as florpyauxifen-benzyl ester, triafamone, fenquinotrione, and tolpyralate. Development of new herbicide formulations and spray methods were suggested as a solution for the population decline in rural area and low labor quality especially in Asia and Pacific regions. In future weedy rice and exotic weeds will be a serious problem in this area so we need to cooperate to make good technical and practical solutions.

Weed Distribution and Its Plant Sociological Aspects on the Polder Land (간척지(于拓地)의 잡초발생(雜草發生) 및 분포의 식물사회학적(植物社會學的) 해석연구(解析硏究))

  • Lee, J.Y.;Guh, J.O.;Chang, H.S.;Bae, S.H.
    • Korean Journal of Weed Science
    • /
    • v.4 no.2
    • /
    • pp.135-142
    • /
    • 1984
  • To obtain the basic information for weed management in polder land, a colligated assessment on weed distribution and it`s plant sociological indices on Gyewha polder land were arranged. At the situation of assessment, the Gyewha polder land was reclaimed with aim with paddy-rice production. As a result of reclamation, the salinity of most soil samples were below 0.3%, and acidity ranged from pH 5.5 to 6.5. Total weed species were counted as much as 17 species (3 gramineae, 7 cyperucese, and 8 broad-leaved species), and a most dominant species, Scirpus maritimus, were succeeded with Monochoria v., Eleocharis a., and Cyperus d., etc. by reclamation. Declining of soil salinity and soil pH, the number of weed species, individuals, biomass, species diversity, evenness, sociability index were increased, but the population particularity was weaken in tendencies. By developing of reclamation, the weed species which is summer annual broad leaf, wind and water disseminating, and tussock formed species are increased instead of salt-resistant, perennial cyperus, and rhizomatous extending species.

  • PDF

Weed Control and Safety of Transgenic Rice Event, CPPO06 in Direct-Seeding Flooded Rice Field (담수직파에서 형질전환 CPPO06이벤트 벼의 안전성 및 잡초방제효과)

  • Won, Ok Jae;Park, Su Hyuk;Eom, Min Yong;Kim, Chang-Gi;Lee, Bum Kyu;Kang, Hong-Gyu;Lee, Jeung Ju;Park, Kee Woong
    • Weed & Turfgrass Science
    • /
    • v.4 no.1
    • /
    • pp.44-48
    • /
    • 2015
  • This study was conducted to evaluate the efficacy of weed control and phytotoxicity of oxyfluorfen using a transgenic rice line (CPPO06 event) resistant to protoporphyrinogen oxidase (Protox) inhibiting herbicides in the direct-seeding flooded rice. Five annual weeds including Echinochloa oryzoides and two perennial weeds were occurred in the test field. Oxyfluorfen at 120 g a.i. $ha^{-1}$ in the application timing of two days before sowing and 0 and five days after sowing showed more than 90% weed control value except for Juglans mandshurica. Total weed control value was more than 95% in any application timing indicating a highly effective herbicide in the direct-seeding flooded rice. When compared with untreated control, no visual injuries were detected at single and double dosage of oxyfluorfen. The agronomic characteristics and yield components of CPPO06 event was reasonable in any time of application in this study. Based on these data, oxyfluorfen application before and after sowing can be applied to provide effective weed management in the direct-seeding flooded field.

Fact-finding Survey on Occurrence of Weeds and Herbicide Usage for Paddy Rice Cultivation in Gyeonggi Province, Korea (경기지역 논잡초 발생양상 및 제초제 사용실태)

  • Won, Taejin;Park, Jungsu;Kim, Soonjae;Kim, Heedong
    • Weed & Turfgrass Science
    • /
    • v.2 no.4
    • /
    • pp.352-357
    • /
    • 2013
  • A survey was performed to investigate major paddy field weeds and frequently used herbicides in Gyeonggi province, Korea in order to establish a system to efficiently control herbicide-resistant weeds. The dominant paddy field weeds included Echinochloa spp. (22%), Eleocharis kuroguwai (14%), Sagittaria trifolia (13%), Scirpus juncoides (12%), Monochoria vaginalis (9%) and Sagittaria pygmaea (7%), and the most widely used herbicides were butachlor 33% CS (25%), benzobicyclon + fentrazamide + imazosulfuron 11.5% SC (9%), cyclosulfamuron + mefenacet 22.2% SC (9%), butachlor 5% GR (6%), and oxadiazon 12% EC (6%) in Gyeonggi province, Korea. Many paddy rice growers considered S. juncoides, M. vaginalis, S. pygmaea and C. difformis as herbicide-resistant weeds. An extensive research deserves to be conducted to monitor occurrence of herbicideresistant paddy weeds in Gyeonggi province, Korea.

Weed Population Distribution and Change of Dominant Weed Species in Paddy Field of Southern Gyeonggi Region (경기 남부지역 논잡초 발생분포 및 군락변화)

  • Park, Jungsoo;Won, Taejin;Roh, Ahnsung;Jang, Jaeeun;Kim, Heedong
    • Weed & Turfgrass Science
    • /
    • v.3 no.2
    • /
    • pp.86-94
    • /
    • 2014
  • Survey was carried out in paddy fields to investigate the dominance of weed species and weed occurrence on 200 fields of southern Gyeonggi region in Korea during the year 2013. We observed 3 species of grass, 5 species of sedge, and 11 species of broadleaf and other weeds. The most dominant weed species was Eleocharis kuroguwai, followed by Echinochloa crus-galli, Sagittaria trifolia, Monochoria vaginalis, Scirpus juncoides and Bidens tripartita. The dominance value of E. kuroguwai and B. tripartita decreased compared to the survey results performed in 2005 but that of M. vaginalis, S. juncoides, S. trifolia and E. crus-galli increased. Weed occurrence increased from 2.83 g in 2005 to 3.51 g in 2013 based on weed dry weight per $m^2$. Occurrence ratio of annual weeds to perennial weeds changed from 45.2% : 54.8% in 2005 to 45.8% : 54.2% in 2013. If we analyze dominance of weed species based on the rice transplanting timing, E. kuroguwai and E. crus-galli were the most dominant weed species at mid-May transplanting, and M. vaginalis and S. juncoides were the most dominant weed species at late- May transplanting, and M. vaginalis and E. kuroguwai were the most dominant weed species at early-June transplanting. Since paddy weeds resistant to sulfonylurea herbicides are expected to be continuously increased, the regular monitoring of their occurrence and efficient control methods should be considered in future.

Resistance to ACCase Inhibitor Cyhalofop-butyl in Echinochloa oryzicola Collected in Gyeongsangnam-do Province of Korea (ACCase 저해 제초제 cyhalofop-butyl에 대한 경남지방 수집종 피의 저항성)

  • Won, Jong Chan;Won, Ok Jae;Ha, Jun;Im, Il-Bin;Kang, Kwang Sik;Pyon, Jong Yeong;Park, Kee Woong;Lee, Jeung Joo
    • Weed & Turfgrass Science
    • /
    • v.7 no.2
    • /
    • pp.166-169
    • /
    • 2018
  • Repeated use of ACCase inhibiting herbicides for a long time has resulted in increases of resistant Echinochloa oryzicola populations in paddy fields in middle west area of Korea. This study aims to investigate current status of herbicide resistant E. oryzicola in Gyeongsangnam-do, in which there is less information about herbicide resistance. For resistance frequency and dose-response study, seeds from 100 individual plants of E. oryzicola in Gyeongsangnam-do were collected and tested with cyhalofop-butyl. Seven percent of plants from Gyeongsangnam-do was resistant at a recommended rate of cyhalofop-butyl. $GR_{50}$ values (herbicide rates required to reduce plant growth 50%) for one representative resistant populations and five susceptible populations were $738g\;a.i.\;ha^{-1}$ and 66-234 (average 147)$g\;a.i.\;ha^{-1}$, respectively, indicating average 5 times difference in resistance. Although lower rate of frequency of herbicide resistance in Gyeongsangnam-do than in Jeollabuk-do, increases of herbicide resistance are expected in this area because of increases of direct seeded rice fields and increases of dependence on a specific herbicide. Therefore, it is necessary to monitor herbicide resistance regularly and conduct integrated herbicide resistance management in this area.