• Title/Summary/Keyword: resistant genes

Search Result 865, Processing Time 0.04 seconds

Prevalence of chloramphenicol-resistant gene in Escherichia coli from water sources in aquaculture farms and rivers of Kuching, Northwestern Borneo

  • Leong, Sui Sien;Lihan, Samuel;Toh, Seng Chiew
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.4
    • /
    • pp.202-213
    • /
    • 2022
  • Antibiotic resistant Escherichia coli cases are increasing high especially in Southeast Asia. Illegal use of the antibiotic in the aquaculture farming may become the culprit of the outbreak and spread into environmental source. A study was conducted to: 1) detect the chloramphenicol (CAL)-resistant gene in E. coli isolated from three aquaculture farms and six rivers of northwestern Borneo and 2) investigate the correlation between cat gene with five common antibiotics used. Isolation of E. coli was done on Eosin methylene blue agar and characterized using indole, methyl red, Voges-Proskauer, citrate tests. E. coli isolates were subsequently tested for their susceptibility to five antibiotics commonly used in aqua-farming. The CAL-resistant E. coli were further analyzed for the presence of resistant genes (cat I, cat II, cat III, cat IV) using multiplex polymerase chain reaction. 42 bacterial colonies were isolated from a total of 80 individual water samples, 34 of which were identified as E. coli. Result showed 85.3% of the E. coli isolates were resistant to amoxicillin, 35.3% were resistant to tetracycline, 29.4% were resistant to CAL, 17.6% were resistant to nitrofurantoin and 8.8% were resistant to nalidixic acid. All of the 10 CAL resistant E. coli isolateswere detected with cat II genes; five isolates detected with cat IV genes; three isolates detected with cat III genes; and another two detected with cat I genes. Pearson correlation coefficient shows highly significant relationship between resistance pattern of CAL with amoxicillin; and CAL with tetracycline. Our findings provide the supplementary information of the CAL resistance gene distribution, thereby improving our understanding of the potential risk of antibiotic resistance underlying within this microbial ecosystem.

Antimicrobial Resistance and Virulence Genes Presence in Escherichia coli Strains Isolated from Gomso Bay, Korea

  • Park, Kwon-Sam
    • Fisheries and Aquatic Sciences
    • /
    • v.16 no.4
    • /
    • pp.221-227
    • /
    • 2013
  • In total, 131 Escherichia coli isolates from surface seawater of the Gomso Bay, of Korea, were analyzed for their susceptibility to 22 different antimicrobials and for genes associated with antimicrobial resistance and virulence. According to the disk diffusion susceptibility test, the resistance to tetracycline was most prevalent (33.6%), followed by that to ampicillin (22.1%), ticarcillin (22.1%), and trimethoprim (16.8%). More than 46.6% of the isolates were resistant to at least one antimicrobial, and 22.9% were resistant to three or more classes of antimicrobials; these were consequently defined as multidrug resistant. We further found that 29 ampicillin-resistant isolates possessed genes encoding TEM-type (93.1%) and SHV-type (6.9%) ${\beta}$-lactamases. Among the 44 tetracycline-resistant isolates, tetA and tetC were found in 35 (79.5%) and 19 (43.2%), respectively, whereas tetB was detected in only three isolates (6.8%). With regard to virulence genes, merely 0.8% (n = 1) and 2.3% (n = 3) of the isolates were positive for the enteroaggregative E. coli-associated plasmid (pCVD432) gene and the enteropathogenic E. coli-specific attaching and effacing (eae) gene, respectively. Overall, these results not only provide novel insight into the necessity for seawater sanitation in Gomso Bay, but they help reduce the risk of contamination of antimicrobial-resistant bacteria.

Breeding Hybrid Rice with Genes Resistant to Diseases and Insects Using Marker-Assisted Selection and Evaluation of Biological Assay

  • Kim, Me-Sun;Ouk, Sothea;Jung, Kuk-Hyun;Song, Yoohan;Le, Van Trang;Yang, Ju-Young;Cho, Yong-Gu
    • Plant Breeding and Biotechnology
    • /
    • v.7 no.3
    • /
    • pp.272-286
    • /
    • 2019
  • Developing elite hybrid rice varieties is one important objective of rice breeding programs. Several genes related to male sterilities, restores, and pollinators have been identified through map-based gene cloning within natural variations of rice. These identified genes are good targets for introducing genetic traits in molecular breeding. This study was conducted to breed elite hybrid lines with major genes related to hybrid traits and disease/insect resistance in 240 genetic resources and F1 hybrid combinations of rice. Molecular markers were reset for three major hybrid genes (S5, Rf3, Rf4) and thirteen disease/insect resistant genes (rice bacterial blight resistance genes Xa3, Xa4, xa5, Xa7, xa13, Xa21; blast resistance genes Pita, Pib, Pi5, Pii; brown planthopper resistant genes Bph18(t) and tungro virus resistance gene tsv1). Genotypes were then analyzed using molecular marker-assisted selection (MAS). Biological assay was then performed at the Red River Delta region in Vietnam using eleven F1 hybrid combinations and two control vatieties. Results showed that nine F1 hybrid combinations were highly resistant to rice bacterial blight and blast. Finally, eight F1 hybrid rice varieties with resistance to disease/insect were selected from eleven F1 hybrid combinations. Their characteristics such as agricultural traits and yields were then investigated. These F1 hybrid rice varieties developed with major genes related to hybrid traits and disease/insect resistant genes could be useful for hybrid breeding programs to achieve high yield with biotic and abiotic resistance.

Antimicrobial-resistant Escherichia coli isolated from dogs and cats at animal hospitals in Daegu (대구지역 동물병원에서 입원중인 개와 고양이로부터 분리된 항생제 내성 대장균)

  • Cho, Jae-Keun;Kim, Jeong-Mi;Kim, Hwan-Deuk;Kim, Kyung-Hee
    • Korean Journal of Veterinary Service
    • /
    • v.40 no.3
    • /
    • pp.193-200
    • /
    • 2017
  • This study was carried out to investigate the antimicrobial resistance profiles and resistance genes in 62 Escherichia coli isolated from dogs and cats hospitalized at animal hospitals in Daegu. E. coli isolates showed high resistance to nalidixic acid (46.8%) and ampicillin (45.2%). Resistance to the other antimicrobial agents was less than 30%, and no resistant isolates were detected for imipenem and amikacin. Of the 28 ampicillin-resistant isolates, TEM and CTX-M genes were detected in 16 (57.1%) and 11 (39.3%), respectively. The aadA gene was found in 4 (26.7%) of 15 gentamicin-resistant isolates, and strA-strB gene was found in 10 (66.7%) isolates. The sul I and sul II genes were detected in 11 (61.1%) and 14 (77.8%) of 18 trimethoprim/sulfamethoxazole-resistant isolates, and tetB gene in 9 (81.8%) of 11 minocycline-resistant isolates, and cmlA gene in 2 (22.2%) of 8 chloramphenicol-resistant isolates. The qnrB and qnrS genes were found in 3 (10.3%) and 1 (3.4%) of 28 nalidixic acid-resistant isolates, respectively. Whereas, none of the SHV, CMY-2, tetA, dfr Ia and dfr VII, and qnrA genes were found. Our results show a wide variety of resistance genes in E. coli isolates from dogs and cats. This study also represents the first report of qnrB and qnrS gene producing E. coli isolates from dogs in republic of Korea.

Detection of beta-lactam antibiotic resistant genes in Escherichia coli from porcine fecal samples using DNA chip

  • Park, Nam-Yong;Na, Sung-Ho;Cho, Ho-Seong
    • Korean Journal of Veterinary Service
    • /
    • v.30 no.4
    • /
    • pp.505-510
    • /
    • 2007
  • This study was conducted to detect ${\beta}$-lactam antibiotic-resistant genes in the 400 E coli isolates from porcine fecal samples in Korea by a DNA chip. The DNA chip contains the specific probe DNAs of the ${\beta}$-lactam antibiotic-resistant genes that had been labeled with a mixture of primer set designed to amplify specific genes (PSE, OXA, FOX, MEN, CMY, TEM, SHV, OXY and AmpC) using a multiplex polymerase chain reaction (PCR). Of 400 isolates 339 contained at least one ${\beta}$-lactamases gene. Resistance to ${\beta}$-lactamases was mediated mainly by AmpC (n = 339, 100%), and followed by TEM (n = 200, 59.0%), CMY (n = 101, 29.8%), PSE (n = 30, 8.9%) and both OXA and SHV genes (n = 20, 5.9%), while the FOX, MEN and OXY genes were not detected. The other sixty-one did not contain any ${\beta}$-lactamase genes even though they were resistant to antimicrobial drugs. In conclusion, the DNA chip system can be used as a rapid and reliable method for detecting of ${\beta}$-lactamases genes, which will help veterinarians select the antibiotics for monitoring and treating of animal diseases.

Differentially Expressed Genes Related to Cold-resistance in Barley (Hordeum vulgare L. cv. Nagaoka)

  • Chun, Jong Un;Park, Jeong-Seon;Bae, Chang-Hyu;Shin, Jeong-Sheop
    • Korean Journal of Breeding Science
    • /
    • v.41 no.2
    • /
    • pp.73-83
    • /
    • 2009
  • To investigate genes related to vernalization and cold- resistance in barley (Hordeum vulgare L. cv. Nagaoka), differentially expressed genes were identified from cold-resistant barley leaves with suppression subtractive hybridization (SSH) and Northern blot analyses. The nucleotide and the deduced amino acid sequences of the putative gene products were compared. The bvrn-7 showed high homology(84%) with gene related to vernalization, and the bvrn-3, bvrn-12, bvrn-28, bvrn-29 and bvrn-36 related to cold-resistant genes had high identity of 88~98% with low temperature-induced genes. The results indicate that the 6 genes were closely related to vernalization and cold-resistance during low temperature treatment.

Breeding for Resistance to Bacterial Blight in Rice (벼흰잎마름병 저항성 품종 육성 및 금후 연구 방향)

  • Shin, Mun-Sik;Kim, Ki-Young;Park, Hyun-Su;Ko, Jae-Kwon
    • Korean Journal of Breeding Science
    • /
    • v.43 no.4
    • /
    • pp.241-251
    • /
    • 2011
  • Bacterial blight(BB) caused by Xanthomonas oryzae pv. oryzae(Xoo) is one of the most economically destructive bacterial diseases of rice in worldwide. Utilization of resistant cultivars carrying resistant gene(s) is relatively an effect method to control this disease. About 34 resistant genes for BB resistance have been identified in many countries. Among them, Xa1 and Xa3 genes against bacterial blight have been incorporated into improved korean japonica rice varieties. Now, Ilmi carrying Xa1 gene and severial cultivars carrying Xa3 gene are widely grown in our country. In recent year, xa5, Xa21 and Xa23 genes are using in rice breeding programs for japonica resistant cultivars to bacterial blight. Resistant cultivars incorporated with a diverse single gene and two, three, or the more major gene necessite in the future.

Characterization of cefotaxime-resistant Escherichia coli isolated from wastewater treatment plant in Daegu (대구지역 폐수처리장에서 분리한 cefotaxime-resistant Escherichia coli의 특성)

  • Kim, Hwan-Deuk;Park, Dae-Hyun;Lee, Mi-Ree;Kim, Eun-Jeong;Cho, Jae-Keun
    • Korean Journal of Veterinary Service
    • /
    • v.37 no.4
    • /
    • pp.225-231
    • /
    • 2014
  • In this study, 185 cefotaxime-resistant Escherichia coli were isolated from different stages of a wastewater treatment plant (WWTP) in Daegu in Korea. Among them, 99.5% (184 isolates) originated from raw sewage and 0.5% (1 isolates) from the final effluent. Cefotaxime-resistant E. coli were high resistant to ampicillin, piperacillin, cefazolin, cephalothin, cefachlor and cefamandole (99.5~100%). About 93% of the cefotaxime-resistant E. coli were extended-spectrum ${\beta}$-lactamases (ESBL)-producing E. coli. The $bla_{TEM+CTX}$ gene was the most predominant of the ESBL genes (72.5%), followed by $bla_{CTX-M}$ (16.2%), $bla_{TEM}$ (8.7%), $bla_{TEM+CTX+SHV}$ (1.1%), $bla_{TEM+SHV}$, $bla_{TEM+OXA}$, and $bla_{TEM+CTX+SHV}$ (respectvely 0.5%). Class 1 and 2 integron were found in 49.7% and class 3 integron was not found. All of integron positive isolates were multiresistant (i.e. resistant to four or more antibiotics). Our findings showed WWTP is contaminated with antibiotic resistant bacteria with resistance genes.

The highly pathogenic H5N1 avian influenza virus induces the mitogen-activated protein kinase signaling pathway in the trachea of two Ri chicken lines

  • Vu, Thi Hao;Hong, Yeojin;Truong, Anh Duc;Lee, Sooyeon;Heo, Jubi;Lillehoj, Hyun S.;Hong, Yeong Ho
    • Animal Bioscience
    • /
    • v.35 no.7
    • /
    • pp.964-974
    • /
    • 2022
  • Objective: The highly pathogenic avian influenza virus (HPAIV) is a threat to the poultry industry and economy and remains a potential source of pandemic infection in humans. Antiviral genes are considered a potential factor for studies on HPAIV resistance. Therefore, in this study, we investigated gene expression related to the mitogen-activated protein kinase (MAPK) signaling pathway by comparing non-infected, HPAI-infected resistant, and susceptible Ri chicken lines. Methods: Resistant (Mx/A; BF2/B21) and susceptible Ri chickens (Mx/G; BF2/B13) were selected by genotyping the Mx and BF2 genes. Then, the tracheal tissues of non-infected and HPAIV H5N1 infected chickens were collected for RNA sequencing. Results: A gene set overlapping test between the analyzed differentially expressed genes (DEGs) and functionally categorized genes was performed, including biological processes of the gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathways. A total of 1,794 DEGs were observed between control and H5N1-infected resistant Ri chickens, 432 DEGs between control and infected susceptible Ri chickens, and 1,202 DEGs between infected susceptible and infected resistant Ri chickens. The expression levels of MAPK signaling pathway-related genes (including MyD88, NF-κB, AP-1, c-fos, Jun, JunD, MAX, c-Myc), cytokines (IL-1β, IL-6, IL-8), type I interferons (IFN-α, IFN-β), and IFN-stimulated genes (Mx1, CCL19, OASL, and PRK) were higher in H5N1-infected than in non-infected resistant Ri chickens. MyD88, Jun, JunD, MAX, cytokines, chemokines, IFNs, and IFN-stimulated expressed genes were higher in resistant-infected than in susceptible-infected Ri chickens. Conclusion: Resistant Ri chickens showed higher antiviral activity compared to susceptible Ri chickens, and H5N1-infected resistant Ri chickens had immune responses and antiviral activity (cytokines, chemokines, interferons, and IFN-stimulated genes), which may have been induced through the MAPK signaling pathway in response to H5N1 infection.

Alteration of chromosomal structure within .betha.-Tubulin and flagellar calmodulin genes during differentiation of naegleria gruberi amebae into flagellates

  • Bok, Jin-Woong;Lee, Joo-Hun
    • Journal of Microbiology
    • /
    • v.33 no.3
    • /
    • pp.222-227
    • /
    • 1995
  • We have examined DNase I sensitivity of .betha.-tubulin and flagellar calmodulin genes which are transiently and coordinately activated differentiation of Naegleria gruberi amebae into flagellates. The DNase I sensitivity of .betha.-tubulin and flagellar calmodulin genes changed in parallel with the changes in transcriptional activity of the respective genes during differentiation. The two genes were resistant to DNase I inamebae stage when transcription of the two genes was inactive. Forthy minutes after initiation of differentiation, when the two genes were most actively being transcribed, the two genes showed the highest sensitsivity to DNase I. One hundred and twenty minutes after initiation, the differentiation was completed and transcriptional activity of the two genes decreased to a low level. At this stage, the two genes were resistant to DNase I treatment like the ones at the amebae stage. This change in the DNase I sensitivity of the two genes was not observed when transcription of the two genes was blocked by adding cycloheximide at the beginning of differentiation.

  • PDF