• Title/Summary/Keyword: resistant capacity

Search Result 303, Processing Time 0.031 seconds

Seismic Fragility Analysis of Buildings With Combined Shear Wall-Damper System (벽체-감쇠 복합시스템을 갖는 건물의 지진취약도 분석)

  • Rajibul Islam;Sudipta Chakraborty;Kong, ByeongJin;Kim, Dookie
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.91-99
    • /
    • 2023
  • Structural vibration induced by earthquake hazards is one of the most significant concerns in structure performance-based design. Structural hazards evoked from seismic events must be properly identified to make buildings resilient enough to withstand extreme earthquake loadings. To investigate the effects of combined earthquake-resistant systems, shear walls and five types of dampers are incorporated in nineteen structural models by altering their arrangements. All the building models were developed as per ACI 318-14 and ASCE 7-16. Seismic fragility curves were developed from the incremental dynamic analyses (IDA) performed by using seven sets of ground motions, and eventually, by following FEMA P695 provisions, the collapse margin ratio (CMR) was computed from the collapse curves. It is evident from the results that the seismic performance of the proposed combined shear wall-damper system is significantly better than the models equipped with shear walls only. The scrutinized dual seismic resisting system is expected to be applied practically to ensure a multi-level shield for tall structures in high seismic risk zones.

Emerging Role of NRF2 Signaling in Cancer Stem Cell Phenotype

  • Steffanus P. Hallis;Jin Myung Kim;Mi-Kyoung Kwak
    • Molecules and Cells
    • /
    • v.46 no.3
    • /
    • pp.153-164
    • /
    • 2023
  • Cancer stem cells (CSCs) are a small population of tumor cells characterized by self-renewal and differentiation capacity. CSCs are currently postulated as the driving force that induces intra-tumor heterogeneity leading to tumor initiation, metastasis, and eventually tumor relapse. Notably, CSCs are inherently resistant to environmental stress, chemotherapy, and radiotherapy due to high levels of antioxidant systems and drug efflux transporters. In this context, a therapeutic strategy targeting the CSC-specific pathway holds a promising cure for cancer. NRF2 (nuclear factor erythroid 2-like 2; NFE2L2) is a master transcription factor that regulates an array of genes involved in the detoxification of reactive oxygen species/electrophiles. Accumulating evidence suggests that persistent NRF2 activation, observed in multiple types of cancer, supports tumor growth, aggressive malignancy, and therapy resistance. Herein, we describe the core properties of CSCs, focusing on treatment resistance, and review the evidence that demonstrates the roles of NRF2 signaling in conferring unique properties of CSCs and the associated signaling pathways.

Seismic performance comparison of existing public facilities strengthened with RC jacketing and steel bracing

  • Zu Irfan;Abdullah Abdullah;Azmeri Azmeri;Moch. Afiffuddin;Rifqi Irvansyah
    • Earthquakes and Structures
    • /
    • v.25 no.1
    • /
    • pp.43-56
    • /
    • 2023
  • Banda Aceh is one of the areas that sustains the most damage during a natural disaster because it contains so many houses, office buildings, public facilities, and schools. Public structures in coastal areas are highly susceptible to earthquakes, resulting in high casualties and property damage. Several public structures were reconstructed during the reconstruction and rehabilitation period. Because this building is located in an area with a high risk of earthquakes, its capacity must be analyzed initially. Additionally, history indicates that Aceh Province has been struck by numerous earthquakes, including the largest ever recorded in 1983 and the most recent earthquake with a magnitude of 9.3 SR on December 26, 2004. The city of Banda Aceh was devastated by this earthquake, which was followed by a tsunami. The possibility of a large earthquake in Banda Aceh City necessitates that the structures constructed there be resistant to seismic risk. This study's objective was to evaluate the seismic performance of the existing building by applying the method of strengthening the structure in the form of jacketing columns and the addition of steel bracing in order to estimate the performance of the structure using multiple ground motions. Therefore, several public buildings must be analyzed to determine the optimal seismic retrofitting technique.

Improvement of hysteretic constitutive model for reinforcements considering buckling

  • Weng Weipeng;Xie Xu;Wang Tianjia;Li Shuailing
    • Earthquakes and Structures
    • /
    • v.25 no.1
    • /
    • pp.57-67
    • /
    • 2023
  • The buckling of longitudinal reinforcements under seismic loading accelerates the degradation of the bearing capacity of reinforced concrete columns. The traditional hysteretic constitutive model of reinforcement, which does not consider buckling, usually overestimates the seismic performance of pier columns. Subsequent researchers have also proposed many models including the buckling effects. However, the accuracy of these hysteretic constitutive models proposed for simulating the buckling behavior is inadequate. In this study, based on their works, the influence of historical events on buckling is considered, the path of the re-tensioning phase is corrected by adjusting the boundary lines, and the positions of the onset buckling point and compressive buckling path during each buckling deformation are corrected by introducing correction parameters and a boundary line. A modified hysteretic constitutive model is obtained, that can more accurately reflect the buckling behavior of reinforcements. Finally, a series of hysteresis tests of reinforcements with different slenderness ratios were then conducted. The experimental results verify the effectiveness of the proposed modified model. Indicating that the modified model can more accurately simulate the equivalent stress-strain relationship of the buckling reinforcement segment.

Investigation of damaged formwork timber beam retrofitting with anchoraged CFRP strip under different loading

  • Abdullah TURER;Ozgur ANIL;Abdulkadir CEVIK;R. Tugrul Erdem
    • Steel and Composite Structures
    • /
    • v.50 no.6
    • /
    • pp.689-703
    • /
    • 2024
  • Construction of high-rise structures, formwork systems that can be installed quickly, resistant to external loads, can be used more than once, have become a necessity. Timber and composite timber materials are preferred in the formation of such formwork systems due to their durability, ease of assembly, light weight and easy to use more than one time. Formwork beams are the most commonly used structural component in the formation of such formwork systems, and these beams can be damaged for different reasons during their lifetime. In this study, H20 top P type timber formwork beams with 1800 and 2450 mm length which is among the products of DOKA(c) company is damaged under the effect of static loading up to a high load level of 85% of the maximum ultimate capacity and after being retrofitted using anchored CFRP strips, performance and behavior of the beams under the influence of various loading types such as static, fatigue and impact are investigated experimentally. Two different lengths of retrofitted timber formwork beams were tested by applying monotonic static, fatigue and impact loading and comments were made about the effects of the retrofit method on performance under different loading types.

Earthquake loss assessment framework of ductile RC frame using component- performance -based methodology

  • Shengfang Qiao;Xiaolei Han;Hesong Hu;Mengxiong Tang
    • Structural Engineering and Mechanics
    • /
    • v.91 no.4
    • /
    • pp.369-382
    • /
    • 2024
  • The earthquake loss assessment framework of ductile reinforced concrete (or RC) frame using component-performance -based methodology was studied in this paper. The elasto-plastic rotation angle was used as the damage indicator of structural component, and the damage-to-loss model was proposed on the basis of the deformation indicator of structural component. Dynamic instability during incremental dynamic analysis was taken as collapse criterion, and column failure was taken as criterion that structure has to be demolished. Expected earthquake losses of low-rise, mid-rise and high-rise RC frames were discussed. The expected earthquake loss encompassed collapse loss, demolition loss and repair loss. Furthermore, component groups of RC frame were divided into structural components, nonstructural components and rugged components. The results indicate that ductile RC frame is more likely to be demolished than collapse, especially in low-rise and mid-rise RC frames. Furthermore, the less collapse margin ratio the structure has, the more demolition probability the structure will suffer under rare earthquake. The demolition share of total earthquake loss might be more prominent than repair share and collapse share in ductile RC frame.

Regenerative capacity of augmented bone in rat calvarial guided bone augmentation model

  • Kubota, Tatsuya;Hasuike, Akira;Ozawa, Yasumasa;Yamamoto, Takanobu;Tsunori, Katsuyoshi;Yamada, Yutaka;Sato, Shuichi
    • Journal of Periodontal and Implant Science
    • /
    • v.47 no.2
    • /
    • pp.77-85
    • /
    • 2017
  • Purpose: Guided bone regeneration (GBR) is the most widely used technique to regenerate and augment bones. Even though augmented bones (ABs) have been examined histologically in many studies, few studies have been conducted to examine the biological potential of these bones and the healing dynamics following their use. Moreover, whether the bone obtained from the GBR procedure possesses the same functions as the existing autogenous bone is uncertain. In particular, little attention has been paid to the regenerative ability of GBR bone. Therefore, the present study histologically evaluated the regenerative capacity of AB in the occlusive space of a rat guided bone augmentation (GBA) model. Methods: The calvaria of 30 rats were exposed, and plastic caps were placed on the right of the calvaria in 10 of the 30 rats. After a 12-week healing phase, critical-sized calvarial bone defects (diameter: 5.0 mm) were trephined into the dorsal parietal bone on the left of the calvaria. Bone particles were harvested from the AB or the cortical bone (CB) using a bone scraper and transplanted into the critical defects. Results: The newly generated bone at the defects' edge was evaluated using micro-computed tomography (micro-CT) and histological sections. In the micro-CT analysis, the radiopacity in both the augmented and the CB groups remained high throughout the observational period. In the histological analysis, the closure rate of the CB was significantly higher than in the AB group. The numbers of cells positive for runt-related transcription factor 2 (Runx2) and tartrate-resistant acid phosphatase (TRAP) in the AB group were larger than in the CB group. Conclusions: The regenerative capacity of AB in the occlusive space of the rat GBA model was confirmed. Within the limitations of this study, the regenerative ability of the AB particulate transplant was inferior to that of the CB particulate transplant.

Changes in Physiological Characteristics of Barley Genotypes under Drought Stress (한발저항성 정도가 다른 보리 품종들의 한발처리에 따른 생리적 특성변화)

  • 이변우;부금동;백남천;김정곤
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.6
    • /
    • pp.506-515
    • /
    • 2003
  • Six barley varieties that showed different degree of drought tolerance were grown with and without drought stress treatment (control), and investigated for the temporal changes in growth and several physiological traits after drought treatment. Soil water potential was -0.05 ㎫ at the initial stage of drought treatment and dropped to -0.29 ㎫ at 19 days after withholding irrigation. Soil water potential (SWP) maintained at -0.05 ㎫ in the control. The dry weight (DW) under the drought treatment were reduced compared to the control as follows: Dicktoo-S (short awn), 69% ; Dicktoo-L (long awn), 70%; Dicktoo-T (tetra), 86%; Dongbori-1, 69%; Suwonssalbori-365, 55% and Tapgolbori, ,37%. Dicktoo lines and Dongbori-1 were more tolerant than Suwonssalbori-365 and Tapgolbori. Leaf relative water contents (RWC) and leaf water potential (LWP) decreased obviously under the drought condition, the decrease being greater especially in the less drought-tolerant barley genotypes. Dongbori-1 and Dicktoo-L in drought treatment showed net photosynthesis of 38% and 17% compared to the control, respectively, and the other four genotypes much lower photosynthesis of 1.1% to 7.0%. Stomatal conductance, mesophyll conductance, and the photochemical efficiency (Fv/Fm) of PS II were reduced by drought treatment, the reduction being greater in drought-sensitive genotypes. The drought-tolerant genotypes had greater osmotic adjustment (OA) capacity under water stress. Thus, the decrease of RWC and LWP was lower and the turgor pressure conservation capacity was higher under water stress in drought-tolerant genotypes. Drought-tolerant genotypes showed less decrease of photosynthesis because stomatal conductance, mesophyll conductance and the ratio (Fv/Fm) of the variable to maximal fluorescence of drought-resistant genotype was decreased less in the drought stress condition. In conclusion, the drought-tolerant genotypes had better water conservation capacity through efficient OA, and this led to the lower decrease of photosynthesis and growth in water stress condition.

Development of Avermectin $B_{1a}$ High-yielding Mutants through Rational Screening Srategy based on Understanding of Biosynthetic Pathway (생합성 경로의 이해를 통한 Avermectin $B_{1a}$ 고생산성 변이주 개발)

  • Song Sung Ki;Jeong Yong Seob;Chun Gie-Taek
    • KSBB Journal
    • /
    • v.20 no.5 s.94
    • /
    • pp.376-382
    • /
    • 2005
  • Avermectin (AVM) $B_{1a}$ produced by Streptomyces avermitilis via polyketide pathway is a secondary metabolite with powerful anthelmintic and insecticidal activities, thus being used as an efficient agent in the field of agriculture and animal health. It has been reported that a precursor for AVM $B_{1a}$ biosynthesis was isoleucine and the biosynthetic pathway of AVM $B_{1a}$ was closely similar to that of fatty acid. Based on understanding of the biosynthetic pathway of AVM $B_{1a}$, we intended to screen various mutants resistant against O-methyl threonine (OMT), an isoleucine-anti metabolite, and/or mutants resistant against p-fluoro phenoxy acetic acid (pFAC), an inhibitor of fatty acid biosynthesis. It was inferred that these mutants could produce AVM $B_{1a}$ more efficiently, due to the acquired capability of not only overproducing isoleucine intracellularly but also channelling metabolized carbon-sources into the polyketide pathway, thus leading to enhanced biosynthesis of AVM $B_{1a}$. The resulting mutant (PFA-1 strain) resistant against 100 ppm of pFAC was able to produce approximately 42 fold higher amount of AVM $B_{1a}$ compared to the parallel mother strain (4,200 vs. 100 units/l). In addition, through the process of continuous strain improvement program carried out by gradually increasing the OMT concentration, it was possible to obtain a more attractive mutant with greater AVM $B_{1a}$ production capacity (9,000 units/l). Notable was that significantly higher producer (12,000 units/l) could be selected through further screening of the resistant mutants, this time, to even higher concentration of PFAC. Meanwhile, through the analysis of AVM Bla production histograms (i.e., number of strains according to their AVM $B_{1a}$ biosynthetic ability) for the earlier strains in comparison with the high producers having the characteristics of resistance to OMT and pFAC, it was found that production stability of the high-yielding producers were remarkably improved, as demonstrated by the fact that larger proportion of the mutated strains had greater capability of AVM $B_{1a}$ biosynthesis ($71\%$ in the range between 5,000 and 7,000 units/L; $47\%$ in the range between 6,000 and 7,000 units/l). Based on these consequences, it was concluded that the rational screening strategy based on the understanding of the biosynthetic pathway of AVM $B_{1a}$ was very effective in obtaining high-yielding mutants with the features of enhanced production stability.

In vitro Anti-tumor Effect of an Engineered Vaccinia Virus in Multiple Cancer Cells and ABCG2 Expressing Drug Resistant Cancer Cells (재조합 백시니아 바이러스의 다양한 암세포 및 ABCG2 과발현 내성 암세포에 대한 항 종양 효과 연구)

  • Park, Ji Hye;Yun, Jisoo;Heo, Jeong;Hwang, Tae Ho;Kwon, Sang Mo
    • Journal of Life Science
    • /
    • v.26 no.7
    • /
    • pp.835-846
    • /
    • 2016
  • Chemo-resistance is the biggest issue of effective cancer therapy. ABCG2 is highly correlated with multi-drug resistance, and represent a typical phenotype of multiple cancer stem-like cells. Accumulating evidence recently reported that oncolytic viruses represent a new strategy for multiple aggressive cancers and drug resistant cancers including cancer stem cell-like cells and ABCG2 expressing cells. In this study, we generated an evolutionally engineered vaccinia virus, SLJ-496, for drug-resistant cancer therapy. We first showed that SLJ-496 treatment enhanced tumor affinity using cytopathic effect assay, plaque assay, as well as cell viability assay. Next, we clearly demonstrated that in vitro SLJ-496 treatment represents significant cytotoxic effect in multiple cancers including colorectal cancer cells (HT-29, HCT-116, HCT-8), gastric cancer cells (AGS, NCI-N87, MKN-28), Hepatocellular carcinoma cells (SNU-449, SNU-423, SNU-475, HepG2), as well as mesothelioma cell (NCI-H226, NCI-H28, MSTO-221h). Highly ABCG2 expressing HT-29 cells represent cancer stem like phenotype including stem cell marker expression, and self-renewal bioactivities. Interestingly, we demonstrated that in vitro treatment of SLJ-496 showed significant cytotoxicity effect, as well as viral replication capacity in ABCG2 overexpressing cell. In addition, we also demonstrated the cytotoxic effect of SLJ-496 in Adriamycin-resistant cell lines, SNU-620 and ADR-300. Taken together, these findings provide us a pivotal clue that cancer therapy using SLJ-496 vaccinia virus might be new therapeutic strategy to overcome ABCG2 expressing cancer stem-like cell and multiple chemo-resistance cancer cells.