• Title/Summary/Keyword: resistant capacity

Search Result 303, Processing Time 0.034 seconds

Antibiotics produced by anaerobic fermentation of Streptococcus sp. An-21-1 isolated from domestic soil I. Screening and identification of anaerobic bacteria (국내토양에서 분리한 혐기성 세균 Streptococcus sp. An-21-1 이 생성하는 항생물질 I. 혐기성 세균의 선별과 동정)

  • Park, Seung-chun;Yun, Hyo-in;Oh, Tae-kwang
    • Korean Journal of Veterinary Research
    • /
    • v.33 no.1
    • /
    • pp.53-60
    • /
    • 1993
  • Anaerobic bacteria are suggested to be potential source for new antibiotics. In order to search for antibiotics from domestic origin, we collected 800 soil samples across Korean locations and could isolate as many as 989 anaerobic strains. Among them 10, strains were found to have good producing capacity of antibiotics. An anaerobe was finally selected due to secreting antibiotics having high antimicrobial activity towards multiple resistant microorganism(E coli JM 83) transformed by genetic engineering technique. Its morphological, physiological and biochemical charateristics were investigated, together with antimicrobial spectrum therefrom. On antimicrobial spectrum study, substance secreted from this strain, had no activities to fungus and yeast. The selected strain showed G(+) and coccal shape, on Gram, staining and electron scanning microscopy, respectively. Biochemically this strain utilized glucose, fructose lactose, sucrose, but did not arabinose, cellulose, rhamnose, sorbitol, trehalose, mannitol. Catalase test showed negative property. Optimal growth temperature was $37^{\circ}C$. The results obtained above suggest this strain Streptococcus faecium subspp. and we named it Streptococcus sp. An-21-1.

  • PDF

Concurrent flexural strength and deformability design of high-performance concrete beams

  • Ho, J.C.M.;Zhou, K.J.H.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.4
    • /
    • pp.541-562
    • /
    • 2011
  • In the design of earthquake resistant reinforced concrete (RC) structures, both flexural strength and deformability need to be considered. However, in almost all existing RC design codes, the design of flexural strength and deformability of RC beams are separated and independent on each other. Therefore, the pros and cons of using high-performance materials on the flexural performance of RC beams are not revealed. From the theoretical results obtained in a previous study on flexural deformability of RC beams, it is seen that the critical design factors such as degree of reinforcement, concrete/steel yield strength and confining pressure would simultaneously affect the flexural strength and deformability. To study the effects of these factors, the previous theoretical results are presented in various charts plotting flexural strength against deformability. Using these charts, a "concurrent flexural strength and deformability design" that would allow structural engineers to consider simultaneously both strength and deformability requirements is developed. For application in real construction practice where concrete strength is usually prescribed, a simpler method of determining the maximum and minimum limits of degree of reinforcement for a particular pair of strength and deformability demand is proposed. Numerical examples are presented to illustrate the application of both design methods.

Determination of plastic hinge properties for static nonlinear analysis of FRP-strengthened circular columns in bridges

  • Amiri, Gholamreza Ghodrati;Jahromi, Azadeh Jaberi;Mohebi, Benyamin
    • Computers and Concrete
    • /
    • v.10 no.5
    • /
    • pp.435-455
    • /
    • 2012
  • In the recent years, rehabilitation of structures, strengthening and increasing the ductility of them under seismic loads have become so vital that many studies has been carried out on the retrofit of steel and concrete members so far. Bridge piers are very important members concerning rehabilitation, in which the plastic hinging zone is very vulnerable. Pier is usually confined by special stirrups predicted in the design procedure; moreover, fiber-reinforced polymers (FRP) jackets are used after construction to confine the pier. FRP wrapping of the piers is one of the most effective ways of increasing moment and ductility capacity of them, which has a growing application due to its relative advantages. In many earthquake-resistant bridges, reinforced concrete columns have a major defect which could be retrofitted in different ways like using FRP. After rehabilitation, it is important to check the strengthening adequacy by dynamic nonlinear analysis and precise modeling of material properties. If the plastic hinge properties are simplified for the strengthened members, as the simplified properties which FEMA 356 proposes for non-strengthened members, static nonlinear analysis could be performed more easily. Current paper involves this matter and it is intended to determine the plastic hinge properties for static nonlinear analysis of the FRP-strengthened circular columns.

Rocking response of self-centring wall with viscous dampers under pulse-type excitations

  • Zhang, Lingxin;Huang, Xiaogang;Zhou, Zhen
    • Earthquakes and Structures
    • /
    • v.19 no.3
    • /
    • pp.215-226
    • /
    • 2020
  • A self-centering wall (SCW) is a lateral resistant rocking system that incorporates posttensioned (PT) tendons to provide a self-centering capacity along with dampers to dissipate energy. This paper investigates the rocking responses of a SCW with base viscous dampers under a sinusoidal-type pulse considering yielding and fracture behaviour of the PT tendon. The differences in the overturning acceleration caused by different initial forces in the PT tendon are computed by the theoretical method. The exact analytical solution to the linear approximate equation of motion is also provided for slender SCWs. Finally, the effects of the ductile behaviour of PT tendons on the rocking response of a SCW are analysed. The results demonstrate that SCWs exhibit two overturning modes under pulse excitation. The overturning region with Mode 1 in the PT force cases separates the safe region of the wall into two parts: region S1 with an elastic tendon and region S2 with a fractured tendon. The minimum overturning acceleration of a SCW with an elastic-brittle tendon becomes insensitive to excitation frequency as the PT force increases. After the plastic behaviour of the PT tendon is considered, the minimum overturning acceleration of a SCW is increased significantly in the whole range of the studied wg/p.

Seismic behavior of steel column-base-connection equipped by NiTi shape memory alloy

  • Jamalpour, Reza;Nekooei, Masoud;Moghadam, Abdolreza Sarvghad
    • Structural Engineering and Mechanics
    • /
    • v.64 no.1
    • /
    • pp.109-120
    • /
    • 2017
  • The behavior of moment resistant steel structures depends on both the beam-column connections and columns foundations connections. Obviously, if the connections can meet the adequate ductility and resistance against lateral loads, the seismic capacity of these structures will be linked practically to the performance of these connections. The shape memory alloys (SMAs) have been most recently used as a means of energy dissipation in buildings. The main approach adopted by researchers in the use of such alloys is firstly bracing, and secondly connecting the beams to columns. Additionally, the behavior of these alloys is modeled in software applications rarely involving equivalent torsional springs and column-foundation connections. This paper attempts to introduce the shape memory alloys and their applications in steel structural connections, proposing a new steel column-foundation connection, not merely a theoretical model but practically a realistic and applicable model in structures. Moreover, it entails the same functionality as macro modeling software based on real behavior, which can use different materials to establish a connection between the columns and foundations. In this paper, the suggested steel column-foundation connection was introduced. Moreover, exploring the seismic dynamic behavior under cyclic loading protocols and the famous earthquake records with different materials such as steel and interconnection equipment by superelastic shape memory alloys have been investigated. Then, the results were compared to demonstrate that such connections are ideal against the seismic behavior and energy dissipation.

Adsorption of chlorhexidine digluconate on acid modified fly ash: Kinetics, isotherms and influencing factors

  • Singh, Astha;Sonal, Sonalika;Kumar, Rohit;Mishra, Brijesh Kumar
    • Environmental Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.205-211
    • /
    • 2020
  • Chlorhexidine digluconate (CHD) in the aquatic environment causes irreversible change to microbes, making them resistant to biodegradation, which needs remediation other than biological process. Adsorption study was performed for the removal of CHD on fly ash (FA) as a function of pH and ionic strength. Experimental result has been validated by characterization using Scanning electron microscopy, Fourier Transform-Infrared Spectroscopy and Brunauer-Emmett-Teller. CHD adsorption with FA showed an increasing trend with an increase in pH. Variation in pH proved to be an influential parameter for the surface charge of adsorbent and the degree of ionization of the CHD molecules. The adsorption capacity of CHD decreased from 23.60 mg g-1 to 1.13 mg g-1, when ionic strength increased from to M. The adsorption isotherms were simulated well by the Freundlich isotherm model having R2 = 0.98. The Lagergren's model was incorporated to predict the system kinetics, while the mechanistic study was better explained by pseudo-second order for FA. On the basis of operational conditions and cost-effectiveness FA was found to be more economical as an adsorbent for the adsorption of CHD.

Effect of Renal Ischemia in Tetraethylammonium Transport in Rabbit Renal Coritcal Slices

  • Joo, Woo-Sik;Nam, Yun-Jeong;Jung, Jin-Sup;Kim, Yong-Keun
    • The Korean Journal of Physiology
    • /
    • v.25 no.2
    • /
    • pp.171-177
    • /
    • 1991
  • This study was carried out to determine effect of acute renal ischemia on transport function of organic cation, tetraethylammonium (TEA), in rabbit kidney proximal tubule. Clamping of the renal artery for 30 and 60 min produced a polyuria which was accompanied by an increase in $Na^+$ excretion. The capacity of kidney cortical slices to accumulate TEA was increased after 30 and 60 min of ischemia. When blood flow was restored for 30 min after 30 and 60 min of ischemia, the augmented TEA uptake was recovered to the control values. Oxygen consumption of cortical slices was stimulated after 30 min of ischemia, whereas it was not altered by 60 min of ischemia. A 90-min ischemia produced a significant inhibition of TEA uptake and tissue oxygen consumption. These results suggest that the basolateral transport system for organic cation persists after ischemic periods of 60 min despite evidence that tubular reabsorptive mechanism of $Na^+$ and water is markedly impaired. This may indicate that the active secretory systems of proximal tubule are more resistant to ischemic injury than the reabsorptive systems.

  • PDF

in vitro Modulation of P-glycoprotein, MRP-1 and BCRP Expression by Mangiferin in Doxorubicin-Treated MCF-7 Cells

  • Louisa, Melva;Soediro, Tjahjani Mirawati;Suyatna, Frans Dhyanagiri
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1639-1642
    • /
    • 2014
  • The multidrug resistance phenotype is one of the major problems in development of cancer cell resistance to chemotherapy. Some natural compounds from medicinal plants have demonstrated promising capacity in enhancing anticancer effects in drug resistant cancer cells. We aimed to investigate whether mangiferin might have an ability to re-sensitize MCF-7 breast cancer cells previously treated with short-term doxorubicin in vitro, through the modulation of efflux transporters, P-glycoprotein (P-gp), MRP1 and BCRP. We exposed MCF-7 breast cancer cells pretreated with doxorubicin for 10 days to mangiferin (10, 25 or 50 ${\mu}M$) for 96 hours. Afterwards, we evaluated influence on cell viability and level of mRNA expression of P-gp, MRP1 and BCRP. Doxorubicin given in combination with mangiferin at low concentrations (10 and 25 ${\mu}M$) failed to give significant reduction in cell viability, while at the highest concentrations, the combination significantly reduced cell viability. The mRNA expression analysis of P-gp, MRP1 and BCRP showed that mangiferin had inhibitory effects on P-gp but no effects on MRP1 and BCRP. In conclusion, we suggest that mangiferin at high concentrations can be used as chemosensitizer for doxorubicin therapy. This effect might be attributed by inhibitory effects of mangiferin on P-glycoprotein expression.

A Study on the Ductility of Concrete-Filled Composite Columns under Cyclic Loading (반복하중을 받는 콘크리트충전 강합성 기둥의 연성에 관한 연구)

  • 송준엽;권영봉;김성곤
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.6
    • /
    • pp.11-19
    • /
    • 2001
  • A series of test on concrete-filled composite columns was preformed to evaluate structural performance under axial compression and cyclic lateral loading. It was presented that concrete-filled composite columns had high strength, high stiffness and large energy-absorption capacity on account of mutual confinement between the steel plate and filled-in concrete. A cross section analysis procedure developed to predict the moment-curvature relation of composite columns was proven to be on accurate and effective method. The ductility factor and the response modification factor were evaluated for the seismic design of concrete-filled composite columns. It was shown that concrete-filled composite columns could be used as a very efficient earthquake-resistant structural member.

  • PDF

On the progressive collapse resistant optimal seismic design of steel frames

  • Hadidi, Ali;Jasour, Ramin;Rafiee, Amin
    • Structural Engineering and Mechanics
    • /
    • v.60 no.5
    • /
    • pp.761-779
    • /
    • 2016
  • Design of safe structures with resistance to progressive collapse is of paramount importance in structural engineering. In this paper, an efficient optimization technique is used for optimal design of steel moment frames subjected to progressive collapse. Seismic design specifications of AISC-LRFD code together with progressive collapse provisions of UFC are considered as the optimization constraints. Linear static, nonlinear static and nonlinear dynamic analysis procedures of alternate path method of UFC are considered in design process. Three design examples are solved and the results are discussed. Results show that frames, which are designed solely considering the AISC-LRFD limitations, cannot resist progressive collapse, in terms of UFC requirements. Moreover, although the linear static analysis procedure needs the least computational cost with compared to the other two procedures, is the most conservative one and results in heaviest frame designs against progressive collapse. By comparing the results of this work with those reported in literature, it is also shown that the optimization technique used in this paper significantly reduces the required computational effort for design. In addition, the effect of the use of connections with high plastic rotational capacity is investigated, whose results show that lighter designs with resistance to progressive collapse can be obtained by using Side Plate connections in steel frames.