• Title/Summary/Keyword: resistant capacity

Search Result 303, Processing Time 0.03 seconds

Earthquake-Resistant Capacity of RC Columns Retrofitted by Fiber-Steel Composite Plate (복합판으로 보강된 철근콘크리트 기둥의 내진성능연구)

  • Park Tae-Man;Park Seong-Min;Hong Hyeok-Jun;Kang Gyeong-Soo;Yoon Jeong-Bae
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.113-120
    • /
    • 2005
  • The purpose of this study is to investigate the strength and ductility improvement of columns retrofitted by steel-fiber composite plate. Test specimens strengthened by three different materials - steel plate(SP), carbon fiber sheet(CF) and fiber-steel composite plate(CP) - were tested under cyclic lateral load with a constant axial load equal to $20\%$ of the axial compression capacity. The structural capacity of composite plate was good or better than that of other retrofitting materials. Test results from all retrofitted specimens showed that considerably higher retrofitting amount was required for strength enhancement. The ductility of retrofitted columns by composite plate was fairly improved. Also, energy ductility ratio was more effective than displacement ductility ratio for ductility estimation of retrofitted column.

Resistance to Toxoplasma gondii Infection in Mice Treated with Silk Protein by Enhanced Immune Responses

  • Moon, Joung-Ho;Pyo, Kyoung-Ho;Jung, Bong-Kwang;Chun, Hyang-Sook;Chai, Jong-Yil;Shin, Eun-Hee
    • Parasites, Hosts and Diseases
    • /
    • v.49 no.3
    • /
    • pp.303-308
    • /
    • 2011
  • This study investigated whether elevated host immune capacity can inhibit T. gondii infection. For this purpose, we used silk protein extracted from Bombyx mori cocoons as a natural supplement to augment immune capacity. After silk protein administration to BALB/c mice for 6 weeks, ratios of T lymphocytes ($CD4^+$ and $CD8^+$ T-cells) and splenocyte proliferative capacities in response to Con A or T. gondii lysate antigen (TLA) were increased. Of various cytokines, which regulate immune systems, Th1 cytokines, such as IFN-${\gamma}$, IL-2, and IL-12, were obviously increased in splenocyte primary cell cultures. Furthermore, the survival of T. gondii (RH strain)-infected mice increased from 2 days to 5 or more days. In a state of immunosuppression induced by methylprednisolone acetate, silk protein-administered mice were resistant to reduction in T-lymphocyte ($CD4^+$ and $CD8^+$ T-cells) numbers and the splenocyte proliferative capacity induced by Con A or TLA with a statistical significance. Taken together, our results suggest that silk protein augments immune capacity in mice and the increased cellular immunity by silk protein administration increases host protection against acute T. gondii infection.

Behavioral Analysis of Triaxial Micropile (TMP) through Field Loading Test and 3D-numerical Analysis (삼축 마이크로파일(TMP)의 현장수평재하시험과 3차원 수치해석을 통한 거동 분석)

  • Kim, Taehyun;Ahn, Kwangkuk;An, Sungyul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.4
    • /
    • pp.15-23
    • /
    • 2021
  • Various micropiles have been developed through research related to micropiles, which have been carried out with the increased use of micropiles. Among the micropile construction methods being developed, the triaxial micropile (tmp), which is recently developed for the purpose of increasing the horizontal bearing capacity (seismic resistance), is representative. The three-axis micropile has the advantage of a method that can resist horizontal load more effectively because three micropiles installed inclined on each axis resist horizontal load. However, there is a problem in effectively using this pile method due to insufficient research on the support characteristics of the triaxial group micropile. In order to effectively utilize the triaxial group micropile (tmp), it is required to evaluate the bearing capacity for the factors that affect the horizontal bearing capacity of the pile. Therefore, in this study, field horizontal loading Tests were performed for each load direction, field loading Tests were verified through three-dimensional finite element analysis, behavioral characteristics of triaxial micropiles were evaluated, and appropriate horizontal bearing capacity was analyzed in consideration of horizontal load directions.

An Evaluation of Seismic Performance for Existing School Building Using Capacity Spectrum Method (성능스펙트럼법을 이용한 기존 학교 건축물의 내진성능평가 및 보강효과 검증)

  • Jang, Jeong-Hyun;Hwang, Ji-Hoon;Yang, Kyeong-Seok;Takashi, Kamiya;Choi, Jae-Hyouk
    • Journal of Advanced Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.11-18
    • /
    • 2012
  • Large scale earthquake was occurred in different parts of the world like Japan (in 1995), Republic of Pakistan (2005), in China (2008) etc and enormous structures were damaged. As a result of collapse of school buildings structures numerous students are died and it had a big impact on the international community. Therefore, the interest of preparing the seismic resistant school building structures in our country is increases as school building are used as emergency shelter for local residents. But the current standard of seismic design ratio of 3.7% is applied for school building in Korea which is only significant earthquake damage is expected. In order to overcome the current situation, seismic performance evaluation is carried out for the existing school building and an accurate and appropriate seismic retrofit is required based on performance evaluation to upgrade the existing school buildings. In this paper, nonlinear analysis on existing school buildings for ATC-40(Applied Technology Council, ATC) and FEMA-356(Federal Emergency Management Agency, FEMA) are carried out using the capacity spectrum method to evaluate seismic performance and to determine the need for retrofitting. In addition, after reinforcement to enhance the seismic performance is applied the seismic performance evaluation is carried out to verify the effectiveness of seismic retrofit.

A study on performance improvement of position control system in hydraulic cylinder for heavy construction machinery (건설기계용 유압실린더 위치 제어시스템의 성능개선에 관한 연구)

  • 한석재;박성환;이진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1450-1454
    • /
    • 1996
  • Even though digital control type high speed solenoid valve is a little inferior to analog control type servo valve and proportional control valve in performance, it is cheap and has secure performance against pollutant and simple control circuit. But high speed solenoid valve is hardly used for heavy machinery instead of servo valve or proportional control valve that is used in severe condition because the valve itself is small capacity and it shows wide dead zone during on-off control and chattering of hydraulic cylinder by chattering of pressure. It is desirable to use low-priced and strong pollutant resistant high speed solenoid valve for obtaining reliability of operation from severe working condition because it isn't necessary to acquire response characteristic of high frequency when we consider the characteristic of heavy machinery operation. In this study, PWM control algorithm for pilot pressure control of large capacity pilot operating valve will be used for precision position control of heavy machinery hydraulic cylinder. Not only cost reduction of main control valve but also high reliability of heavy machinery in severe condition can be obtained by using this pilot operating spool valve with high speed solenoid valve.

  • PDF

Evaluation of the seismic performance of special moment frames using incremental nonlinear dynamic analysis

  • Khorami, Majid;Khorami, Masoud;Motahar, Hedayatollah;Alvansazyazdi, Mohammadfarid;Shariati, Mahdi;Jalali, Abdolrahim;Tahir, M.M.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.2
    • /
    • pp.259-268
    • /
    • 2017
  • In this paper, the incremental nonlinear dynamic analysis is used to evaluate the seismic performance of steel moment frame structures. To this purpose, three special moment frame structure with 5, 10 and 15 stories are designed according to the Iran's national building code for steel structures and the provisions for design of earthquake resistant buildings (2800 code). Incremental Nonlinear Analysis (IDA) is performed for 15 different ground motions, and responses of the structures are evaluated. For the immediate occupancy and the collapse prevention performance levels, the probability that seismic demand exceeds the seismic capacity of the structures is computed based on FEMA350. Also, fragility curves are plotted for three high-code damage levels using HASUS provisions. Based on the obtained results, it is evident that increase in the height of the frame structures reduces the reliability level. In addition, it is concluded that for the design earthquake the probability of exceeding average collapse prevention level is considerably larger than high and full collapse prevention levels.9.

Physicochemical Properties of Rice Starch and Cooked Rice Hardness (쌀 전분의 이화학적 성질과 쌀밥의 경도)

  • Gil, Bog-Im;Im, Yang-Soon;Ahn, Seung-Yo
    • Applied Biological Chemistry
    • /
    • v.31 no.3
    • /
    • pp.249-254
    • /
    • 1988
  • Physicochemical properties of starches from the rices of Akibare, Samgang and Mahatma and hardness of the cooked rice were examined Water binding capacity and amylose content were heigher in Samgang. Peak viscosity and breakdown were heigher in order of Akibare, Samgang and Mahatma, while consistency and set back were reverse order. Hydrolytic patterns of three starches with 2.2N HCl at $35^{\circ}C$ showed two distinct stages. Hydrolysis extent of Mahatma starch was lower than those of Akibare and Samgang starches. The relative crystallinities of these starches were heigher in order of Mahatma, Akibare and Samgang. Mahatma was more resistant to heat and acid treatments, lower in water binding capacity and harder when it was cooked.

  • PDF

Anti-osteoporotic and Antioxidant Activities by Rhizomes of Kaempferia parviflora Wall. ex Baker

  • Nguyen, Phuong Thao;Bui, Thi Thuy Luyen;Lee, Sang Hyun;Jang, Hae Dong;Kim, Young Ho
    • Natural Product Sciences
    • /
    • v.22 no.1
    • /
    • pp.13-19
    • /
    • 2016
  • In this report, we investigated the antioxidant (peroxyl radical-scavenging and reducing capacities) and anti-osteoporotic activities of extracts and isolated constituents (1 - 16) from the rhizomes of Kaempferia parviflora Wall. ex Baker on pre-osteoclastic RAW 264.7 cells. Compound 5 exhibited significant peroxyl radical-scavenging capacity, with TE value of $8.47{\pm}0.52{\mu}M$, while compound 13 showed significant reducing capacity, with CUPRAC value of $5.66{\pm}0.26{\mu}M$, at $10.0{\mu}M$. In addition, flavonoid compounds 2, 4, 6, 8, 10, 12, and terpene compound 15 showed significant inhibition of tartrate-resistant acid phosphatase (TRAP) in NF-${\kappa}B$ ligand-induced osteoclastic RAW 264.7 cells, with values ranging from $16.97{\pm}1.02$ to $64.67{\pm}2.76%$. These results indicated that K. parviflora could be excellent sources for the antioxidant and anti-osteoporotic traditional medicinal plants.

Improvement and Evaluation for Seismic Resistant Capacity of Reinforced Concrete Shear wall with Connection Types and Diagonal Reinforcement (철근콘크리트 전단벽의 접합방식과 대각보강에 따른 내진성능 평가 및 개선)

  • Shin, Jong-Hack;Ha, Gee-Joo;An, Joon-Suk;Ju, Jung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.139-147
    • /
    • 1999
  • Six reinforced concrete shear wall, constructured with fully rigid, slit, and infilled types, were tested under both vertical and cyclic loadings. Experimental programs were carried out to evaluate the seismic performance of such test specimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility, under load reversals. All the specimens were modeled in one-third scale size. Based on the test results, the following conclusions can be made. For the diagonal reinforced slit and infilled shear wall specimens, it was found that the failure mode shows very effective crack control and crushing due to slippage prevention of boundary region and reduction of diagonal tension rathar than the brittle shear and diagonal tension failure. The ductility of specimens designed by the diagonal reinforcement for the slit and infilled shear wall was increased 1.72~1.81 times in comparison with the fully rigid shear wall frame. Maximum horizontal load-carrying capacity of specimens designed by the diagonal reinforcement ratio the slit and infilled shear wall was increased respectively by l.14 times and l.49 times in comparison with the standard fully rigid shear wall frame.

  • PDF

Experimental study on high gravity dam strengthened with reinforcement for seismic resistance on shaking table

  • Wang, Mingming;Chen, Jianyun;Fan, Shuli;Lv, Shaolan
    • Structural Engineering and Mechanics
    • /
    • v.51 no.4
    • /
    • pp.663-683
    • /
    • 2014
  • In order to study the dynamic failure mechanism and aseismic measure for high concrete gravity dam under earthquake, the comparative models experiment on the shaking table was conducted to investigate the dynamic damage response of concrete gravity dam with and without the presence of reinforcement and evaluate the effectiveness of the strengthening measure. A new model concrete was proposed and applied for maintaining similitude with the prototype. A kind of extra fine wires as a substitute for rebar was embedded in four-points bending specimens of the model concrete to make of reinforced model concrete. The simulation of reinforcement concrete of the weak zones of high dam by the reinforced model concrete meets the similitude requirements. A tank filled with water is mounted at the upstream of the dam models to simulate the reservoir. The Peak Ground Acceleration (PGA) that induces the first tensile crack at the head of dam is applied as the basic index for estimating the overload capacity of high concrete dams. For the two model dams with and without strengthening tested, vulnerable parts of them are the necks near the crests. The results also indicate that the reinforcement is beneficial for improving the seismic-resistant capacity of the gravity dam.