• Title/Summary/Keyword: resistance detection

Search Result 555, Processing Time 0.029 seconds

Fracture Behavior of Silicon Nitride-silicon Carbide-boron Nitride Multi-layer Composites with Different Layer Thickness

  • Cho, Byoung-Uk;Park, Dong-Soo;Park, Hong-Chae
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.7
    • /
    • pp.622-627
    • /
    • 2002
  • Multi-layer composites consisting of silicon nitride, silicon nitride-silicon carbide and boron nitride-alumina layers were prepared fly stacking the corresponding ceramic tapes. The composites demonstrated self-diagnostic capability and non-catastrophic failure behavior. The composites consisting of many thin layers exhibited high strength and stepwise increase of the electrical resistance during the flexure test. The strength of the composite with too thick silicon nitride layers was low and the electrical resistance was abruptly increased to the detection limit of the digital multi-meter during the test. An extensive crack branching was observed in the weak (BN + Al$_2$O$_3$)layer.

Application of Low Voltage High Resistance Grounding in Nuclear Power Plants

  • Chang, Choong-Koo;Hassan, Mostafa Ahmed Fouad
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.211-217
    • /
    • 2016
  • Most nuclear power plants now utilize solid grounded low voltage systems. For safety and reliability reasons, the low voltage (LV) high resistance grounding (HRG) system is also increasingly used in the pulp and paper, petroleum and chemical, and semiconductor industries. Fault detection is easiest and fastest with a solidly grounded system. However, a solidly grounded system has many limitations such as severe fault damage, poor reliability on essential circuits, and electrical noise caused by the high magnitude of ground fault currents. This paper will briefly address the strengths and weaknesses of LV grounding systems. An example of a low voltage HRG system in the LV system of a nuclear power plant will be presented. The HRG system is highly recommended for LV systems of nuclear power plants if sufficient considerations are provided to prevent nuisance tripping of ground fault relays and to avoid the deterioration of system reliability.

Detection of rpoB Gene Mutation in Rifampin-Resistant M. Tuberculosis by Oligonucleotide Chip (Oligonucleotide chip을 이용한 Rifampin 내성 결핵균의 rpoB 유전자 돌연변이 검출)

  • Park, Soon-Kew;Lee, Min-Ki;Chung, Byung-Seon;Kim, Cheol-Min;Chang, Chul-Hun L.;Park, Hee-Kyung;Jang, Hyun-Jung;Park, Seung-Kyu;Song, Sun-Dae
    • Tuberculosis and Respiratory Diseases
    • /
    • v.49 no.5
    • /
    • pp.546-557
    • /
    • 2000
  • Background : Oligonucleotide chip technology has proven to be a very useful tool in the rapid diagnosis of infectious disease. Rifampin resistance is considered as a useful marker of multidrug-resistance in tuberculosis. Mutations in the rpoB gene coding $\beta$ subunit of RNA polymerase represent the main mechanism of rifampin resistance. The purpose of this study was to develop a diagnosis kit using oligonucleotide chip for the rapid and accurate detection of rifampin-resistance in Mycobacterium tuberculosis. Method : The sequence specific probes for mutations in the rpoB gene were designed and spotted onto the glass slide, oligonucleotide chip. 38 clinical isolates of Mycobacterium were tested. A part of rpoB was amplified, labelled, and hybridized on the oligonucleotide chip with probes. Results were analyzed with a laser scanner. Direct sequencing was done to verify the results. Result : The low-density oligonucleotide chip design어 to determine the specific mutations in the rpoB gene of M. tuberculosis accurately detected rifampin resistance associated with mutations in 28 clinical isolates. Mutations at codons 531, 526, and 513 were confirmed by direct sequencing analysis. Conclusion : Mutant detection using oligonucleotide chip technology is a reliable and useful diagnostic tool for the detection of multidrug-resistance in M. tuberculosis.

  • PDF

An Electrical Signal Detection System Using Nanoparticle for a Microbiochip (나노입자를 이용한 마이크로 바이오칩의 전기적 신호검출)

  • Raa Kwang Youel;Park Jae Jun;Lee Seoung Hwan;Ahn Yoo Min;Cho Nahm Gyoo;Hwang Seung Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.1 s.244
    • /
    • pp.1-7
    • /
    • 2006
  • A system for the electrical bio signal detection for a microchip is proposed. Gold nanoparticles were selected for the system for their bio-compatibility and potential for higher sensitivity with large surface areas. For the estimation of the conductivity of gold nanoparticles, microchips with interdigitated microelectrodes of 3,5,7 and $9\;{\mu}m$ spacing were fabricated. In addition, a simulation program was developed to estimate the electrical resistance of the fabricated microchip. The results of conduction simulation for the nanoparticles show good agreements with experimental data, which validate the proposed system.

Frquency Characteristics of Electronic Mixing Optical Detection using APD for Radio over Fiber Network (무선 광파이버 네트웍(RoF)을 위한 APD 광전 믹싱검파의 주파수 특성)

  • Choi, Young-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1386-1392
    • /
    • 2009
  • An analysis is presented for super-high-speed optical demodulation by an avalanche photodiode(APD) with electric mixing. A normalized gain is defined to evaluate the performance of the optical mixing detection. Unlike previous work, we include the effect of the nonlinear variation of the APD capacitance with bias voltage as well as the effect of parasitic and amplifier input capacitance. As a results, the normalized gain is dependent on the signal frequency and the frequency difference between the signal and the local oscillator frequency. However, the current through the equivalent resistance of the APD is almost independent of signal frequency. The mixing output is mainly attributed to the nonlinearity of the multiplication factor. We show also that there is an optimal local oscillator voltage at which the normalized gain is maximized for a given avalanche photodiode.

A Study on the Tool Life Detection System in Cutting Process. (절삭가공중의 공구수명검출 시스템 개발에 관한 연구)

  • 김정두;최종순
    • Journal of the Korean Professional Engineers Association
    • /
    • v.21 no.4
    • /
    • pp.6-11
    • /
    • 1988
  • The study on the progress of automatic machining system has been active centering at the CNC machine tools recently to lead the applied production technology like unmaned machining to the practical level, and to make these application more efficient, they require detective method for tool wear and breakage while machining. In this study chiefly on turning, first derive cutting force about the tool surface by the cutting resistant sensor and with which change into electric signal and compare with the standards to make the tool life detection system to let know the tool life and study its application; the cutting resistance detected by the cutting resistant sensor has increased to the level of standards, the measuring system which can decide whether we change tools on the basis of comperative circuit is shown to be very reliable model for cutting tool life detection system.

  • PDF