• Title/Summary/Keyword: resistance change

Search Result 2,429, Processing Time 0.027 seconds

Evaluations of Swaging Process for Rotor Core of Induction Motors II (유도전동기 회전자 제작시 압입작업 평가 II)

  • Park, Sang-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.464-469
    • /
    • 2017
  • This study evaluated the displacements of a Cu bar in the Y-direction and the relationship between swaging pressures and total contact forces to increase the productivity of the rotor core swaging process. Elastic-plastic numerical analyses of four different Cu bar shapes were performed with a constant swaging pressure to evaluate the displacements of the Cu bar in the Y-direction and the contact force distributions at the contact surfaces during the swaging process. Based on the numerical analysis results, the following conclusions were obtained. First, a simplified 2-dimensional cyclic symmetric analysis model was developed for the numerical analysis of the rotor core swaging process. Second, the final displacements of the Cu bar in the Y-direction were nearly the same as the change of the Cu bar size at a constant swaging pressure. Third, a linear relationship between the swaging pressures and the total contact forces, the so called resistance forces, was suggested.

A study on the Color and Texture of Ti$_{x}$N Coating with Sputtering Condition (Suputtering 조건에 따른 Ti$_{x}$N Coating 층의 색상과 집합조직에 관한 연구)

  • 김학동;조성식
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.3
    • /
    • pp.133-141
    • /
    • 1998
  • Stainless is widely used for various purposes due to its good corrosion resistance. There has been much research to produce the color stainless steel by several methods. In this experiment, TixN films have been deposited on the SUS304 substrate by the DC magnetron sputtering system and the color and texture of the films as a function of coating conditions has been studies. The TixN films showed a (111) preferred orintation in bias-free conditions. The texture of coated later was changed from (111) to (200) to (2200 with a change of the bias from -1000V to -3000V. When the bias is low, coated elements have low energy. Therefore, the texturct (111) of low surface energy. The mobility of atoms was increased with the increase of the blas and texture was changed to the other plane. Non-etched specimens all exhibited strong (111) texture. This result shows that (111) is a loose plane and of non-etched specimens all exhibited. High growing velocity of (111) of especially was main texture of Non-etched specimens. Low working pressure($4\times10^{-3}$torr) was more effective than figh working pressure ($6\times10^{-3}$torr) for the gold color of $Ti_xN$ film. L and b were increased and a was decreased with the increase of bias voltage. Accordingly, We obtained the near gold color of $Ti_xN$ film(L;92, a;1~1.5 b:24~29.50. As a result of reflectance. And as the bias increased, the reflectance was proportional to the increasing bias voltage, but we took the top reflectance when the bias voltage was -200V.

  • PDF

A case study on asymmetric deformation mechanism of the reserved roadway under mining influences and its control techniques

  • Li, Chen;Wu, Zheng;Zhang, Wenlong;Sun, Yanhua;Zhu, Chun;Zhang, Xiaohu
    • Geomechanics and Engineering
    • /
    • v.22 no.5
    • /
    • pp.449-460
    • /
    • 2020
  • The double-lane arrangement model is frequently used in underground coal mines because it is beneficial to improve the mining efficiency of the working face. When the double-lane arrangement is used, the service time of the reserved roadway increases by twice, which causes several difficulties for the maintenance of the roadway. Given the severe non-uniform deformation of the reserved roadway in the Buertai Coal Mine, the stress distribution law in the mining area, the failure characteristics of roadway and the control effect of support resistance (SR) were systematically studied through on-site monitoring, FLAC 3D numerical simulation, mechanical model analysis. The research shows that the deformation and failure of the reserved roadway mainly manifested as asymmetrical roof sag and floor heave in the region behind the working face, and the roof dripping phenomenon occurred in the severe roof sag area. After the coal is mined out, the stress adjustment around goaf will happen to some extent. For example, the magnitude, direction, and confining pressure ratio of the principal stress at different positions will change. Under the influence of high-stress rotation, the plastic zone of the weak surrounding rock is expanded asymmetrically, which finally leads to the asymmetric failure of roadway. The existing roadway support has a limited effect on the control of the stress field and plastic zone, i.e., the anchor cable reinforcement cannot fully control the roadway deformation under given conditions. Based on obtained results, using roadway grouting and advanced hydraulic support during the secondary mining of the panel 22205 is proposed to ensure roadway safety. This study provides a reference for the stability control of roadway with similar geological conditions.

Bonding Property and Reliability for Press-fit Interconnection (Press-fit 단자 접합특성 및 신뢰성)

  • Oh, Sangjoo;Kim, Dajung;Hong, Won Sik;Oh, Chulmin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.3
    • /
    • pp.63-69
    • /
    • 2019
  • Soldering technology has been used in electronic industry for a long time. However, due to solder fatigue characteristics, automotive electronics are searching the semi-permanent interconnection technology such as press-fit method. Press fit interconnection is a joining technology that mechanically inserts a press fit metal terminal into a through hole in a board, and induces a strong bonding by closely contacting the inner surface joining of the through hole by plastic deformation of press-fit terminal. In this paper, the bonding properties of press-fit interconnection are investigated with PCB hole size and surface finishes. In order to compare interconnection reliability between the press fit and soldering, the change in resistance of the press-fit and soldering joints was observed during thermal shock test. After thermal cycling, the failure modes are investigated to reveal the degradation mechanism both press-fit and soldering technology.

Effect of Unfermented and Fermented Atractylodes macrocephalae on Gut Permeability and Lipopolysaccharide-Induced Inflammation (백출 및 발효백출의 장점막 투과성 개선 효과 및 항염증효과)

  • Han, Kyungsun;Kim, Kicheol;Wang, Jinghua;Kim, Hojun
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.13 no.1
    • /
    • pp.24-32
    • /
    • 2013
  • Objectives: The aim of this study is to investigate anti-imflammatory and protective effect for intestinal epithelial cells with Atractylodes macrocephae (AM), a traditional Korean Herbal medicine and fermented Atractylodes macrocephae (FAM) with Lactobacillus plantarum. Methods: HCT-116 and Raw 264.7 cells were used in this study. Using NO assay, we measured lipopolysaccharide (LPS)-induced anti-inflammatory effect. We measured permeability of intestinal epithelial cells with transepithelial electrical resistance and horseradish peroxide flux assay. Water soluble tetrazolium salt assay was used to see cell proliferation. All the results were presented in mean and standard deviation. We used Student's t-test for analyzing significance of results. Results: In Raw 264.7 cells NO production decreased 22.4% with pre-treatment of AM and FAM, especially with FAM in high concentration. In HCT-116 cells LPS-induced intestinal permeability had a protective effect with both AM and FAM, which was also tend to be proportional to the concentration. Cell viability increased up to 135.52% after treatment of high concentration of FAM in HCT-116, while there was no significant change in Raw 264.7 cells with herb treatments. Conclusions: These results show evidence that AM, especially fermented ones, significantly reduced intestinal membrane permeability. They also had a protective effect as well as an anti-inflammation effect for HCT-116 and Raw 264.7 cells. This suggest that FAM may be a therapeutic agent for Leaky gut syndrome by reducing intestinal permeability.

Tribological Performance of Ni-Cr Composite Coating Sprayed onto AISI 4340 (SNCM439) Steel by High Velocity Oxygen Fuel

  • Umarov, Rakhmatjon;Pyun, Young-Sik;Amanov, Auezhan
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.217-225
    • /
    • 2018
  • In this study, we spray a Ni-Cr composite powder onto AISI 4340 steel using the high velocity oxygen fuel method. We subsequently subject the Ni-Cr coating (as-sprayed) to ultrasonic nanocrystal surface modification (UNSM) process to improve the tribological performance. This study aims at increasing the wear resistance and durability of the Ni-Cr coating by altering the surface integrity and microstructure via the UNSM process. The UNSM process reduces the surface roughness of the as-sprayed coating by about 64%, which is explained by observing the elimination of high peaks and valleys and filling up micro-pores. Furthermore, a change in the microstructure of the coating due to continuous high-frequency strikes to the surface by a tip can lead to an increase in hardness from about 48 to 60 HRC. Furthermore, we investigate the characterization of the friction and wear behavior of Ni-Cr coating by a ball-on-disc tribometer in the dry conditions. We determine that after the UNSM process, there is a significant reduction in the friction coefficient of the as-sprayed coating from approximately 1.1 to 0.75. This is owing to the increased hardness and smoothed surface roughness. In addition, we investigate the surface morphology and wear track of the coatings before and after the UNSM process using a scanning electron microscope, energy dispersive spectrometer, and three-dimensional laser scanning microscope. We observe that the wear track of the Ni-Cr coating after the UNSM process is lower than that of the as-sprayed one. Thus, we confirm that the UNSM process has a significant influence on the improvement of the tribological performance of the Ni-Cr composite coating.

Protection of palmitic acid treatment in RAW264.7 cells and BALB/c mice during Brucella abortus 544 infection

  • Reyes, Alisha Wehdnesday Bernardo;Huy, Tran Xuan Ngoc;Vu, Son Hai;Kim, Hyun Jin;Lee, Jin Ju;Choi, Jeong Soo;Lee, John Hwa;Kim, Suk
    • Journal of Veterinary Science
    • /
    • v.22 no.2
    • /
    • pp.18.1-18.12
    • /
    • 2021
  • Background: We previously elucidated the protective mechanism of Korean red ginseng oil (RGO) against Brucella abortus infection, and our phytochemical analysis revealed that palmitic acid (PA) was an abundant component of RGO. Consequently, we investigated the contribution of PA against B. abortus. Objectives: We aimed to investigate the efficacy of PA against B. abortus infection using a murine cell line and a murine model. Methods: Cell viability, bactericidal, internalization, and intracellular replication, western blot, nitric oxide (NO), and superoxide (O2-) analyses and flow cytometry were performed to determine the effects of PA on the progression of B. abortus infection in macrophages. Flow cytometry for cytokine analysis of serum samples and bacterial counts from the spleens were performed to determine the effect of PA in a mouse model. Results: PA did not affect the growth of B. abortus. PA treatment in macrophages did not change B. abortus uptake but it did attenuate the intracellular survivability of B. abortus. Incubation of cells with PA resulted in a modest increase in sirtuin 1 (SIRT1) expression. Compared to control cells, reduced nitrite accumulation, augmented O2-, and enhanced pro-inflammatory cytokine production were observed in PA-treated B. abortus-infected cells. Mice orally treated with PA displayed a decreased serum interleukin-10 level and enhanced bacterial resistance. Conclusions: Our results suggest that PA participates in the control of B. abortus within murine macrophages, and the in vivo study results confirm its efficacy against the infection. However, further investigations are encouraged to completely characterize the mechanisms involved in the inhibition of B. abortus infection by fatty acids.

Low pH stress responsive transcriptome of seedling roots in wheat (Triticum aestivum L.)

  • Hu, Haiyan;He, Jie;Zhao, Junjie;Ou, Xingqi;Li, Hongmin;Ru, Zhengang
    • Genes and Genomics
    • /
    • v.40 no.11
    • /
    • pp.1199-1211
    • /
    • 2018
  • Soil acidification is one of major problems limiting crop growth and especially becoming increasingly serious in China owing to excessive use of nitrogen fertilizer. Only the STOP1 of Arabidopsis was identified clearly sensitive to proton rhizotoxicity and the molecular mechanism for proton toxicity tolerance of plants is still poorly understood. The main objective of this study was to investigate the transcriptomic change in plants under the low pH stress. The low pH as a single factor was employed to induce the response of the wheat seedling roots. Wheat cDNA microarray was used to identify differentially expressed genes (DEGs). A total of 1057 DEGs were identified, of which 761 genes were up-regulated and 296 were down-regulated. The greater percentage of up-regulated genes involved in developmental processes, immune system processes, multi-organism processes, positive regulation of biological processes and metabolic processes of the biological processes. The more proportion of down-regulation genes belong to the molecular function category including transporter activity, antioxidant activity and molecular transducer activity and to the extracellular region of the cellular components category. Moreover, most genes among 41 genes involved in ion binding, 17 WAKY transcription factor genes and 17 genes related to transport activity were up-regulated. KEGG analysis showed that the jasmonate signal transduction and flavonoid biosynthesis might play important roles in response to the low pH stress in wheat seedling roots. Based on the data, it is can be deduced that WRKY transcription factors might play a critical role in the transcriptional regulation, and the alkalifying of the rhizosphere might be the earliest response process to low pH stress in wheat seedling roots. These results provide a basis to reveal the molecular mechanism of proton toxicity tolerance in plants.

Property Evaluation of Tungsten-Carbide Hard Materials as a Function of Binder (소결조제 변화에 따른 텅스텐카바이드 소결체 특성평가)

  • Kim, Ju-Hun;Oh, Ik-Hyun;Lee, Jeong-Han;Hong, Sung-Kil;Park, Hyun-Kuk
    • Journal of Powder Materials
    • /
    • v.26 no.2
    • /
    • pp.132-137
    • /
    • 2019
  • Tungsten carbide (WC) hard materials are used in various industries and possess a superior hardness compared to other hard materials. They have particularly high melting points, high strength, and abrasion resistance. Accordingly, tungsten carbide hard materials are used for wear-resistant tools, cutting tools, machining tools, and other tooling materials. In this study, the WC-5wt.%Co, Fe, Ni hard materials are densified using the horizontal ball milled WC-Co, WC-Fe, and WC-Ni powders by a spark plasma sintering process. The WC-5Co, WC-5Fe, and WC-5Ni hard materials are almost completely densified with a relative density of up to 99.6% after simultaneous application of a pressure of 60 MPa and an electric current for about 15 min without any significant change in the grain size. The average grain size of WC-5Co, WC-5Fe, and WC-5Ni that was produced through SPS was about 0.421, 0.779, and $0.429{\mu}m$, respectively. The hardness and fracture toughness of the dense WC-5Co, WC-5Fe, WC-5Ni hard materials were also investigated.

Creating damage tolerant intersections in composite structures using tufting and 3D woven connectors

  • Clegg, Harry M.;Dell'Anno, Giuseppe;Partridge, Ivana K.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.2
    • /
    • pp.145-156
    • /
    • 2019
  • As the industrial desire for a step change in productivity within the manufacture of composite structures increases, so does the interest in Through-Thickness Reinforcement technologies. As manufacturers look to increase the production rate, whilst reducing cost, Through-Thickness Reinforcement technologies represent valid methods to reinforce structural joints, as well as providing a potential alternative to mechanical fastening and bolting. The use of tufting promises to resolve the typically low delamination resistance, which is necessary when it comes to creating intersections within complex composite structures. Emerging methods include the use of 3D woven connectors, and orthogonally intersecting fibre packs, with the components secured by the selective insertion of microfasteners in the form of tufts. Intersections of this type are prevalent in aeronautical applications, as a typical connection to be found in aircraft wing structures, and their intersections with the composite skin and other structural elements. The common practice is to create back-to-back composite "L's", or to utilise a machined metallic connector, mechanically fastened to the remainder of the structure. 3D woven connectors and selective Through-Thickness Reinforcement promise to increase the ultimate load that the structure can bear, whilst reducing manufacturing complexity, increasing the load carrying capability and facilitating the automated production of parts of the composite structure. This paper provides an overview of the currently available methods for creating intersections within composite structures and compares them to alternatives involving the use of 3D woven connectors, and the application of selective Through-Thickness Reinforcement for enhanced damage tolerance. The use of tufts is investigated, and their effect on the load carrying ability of the structure is examined. The results of mechanical tests are presented for each of the methods described, and their failure characteristics examined.