• Title/Summary/Keyword: resistance capacity

Search Result 1,661, Processing Time 0.031 seconds

Determination of the load carrying capacity of closed steel supports used in underground construction and mining

  • Lenka, Koubova;Petr, Janas;Karel, Janas;Martin, Krejsa
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.715-728
    • /
    • 2022
  • Closed steel supports of different shapes are used in mining and underground constructions. The supports are prefabricated from rolled, usually robust, steel profiles. The load carrying capacity of a support is considerably influenced by the active loading and passive forces. The passive forces are induced by interactions between the support and the surrounding rock mass. The analysis herein comprises three parts: The first part consists of structural geometry processing. The second part involves finding the numerical solution of a statically indeterminate structure for a specified load. The third part is calculation of the load carrying capacity and the components of internal forces and deformations. For this, the force method and numerical integration are used. The Winkler model is applied when the support interacts with the surrounding environment. The load carrying capacity is limited by the slip resistance of the connected parts and it is limited by reaching the ultimate state of the profile. This paper serves as a comprehensive reference for the determination of the load carrying capacity of closed steel supports and includes stepwise derivations of the governing formulas.

Size Effects of the Catalyst on Characteristics of Zn/Air Batteries ($MnO_2$입자 크기에 따른 아연공기전지의 특성연구)

  • Kim, Jee-Hoon;Eom, Seung-Wook;Moon, Seong-In;Yun, Mun-Soo;Kim, Ju-Yong;Yug, Gyeong-Chang;Park, Jeong-Hoo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1129-1131
    • /
    • 2002
  • Zinc Air battery obtain their energy density advantage over the other batteries by utilizing ambient oxygen as the cathode materials, and reusing cathode as recycled form. And specific capacity of zinc powder is as high as 820mAh/g. When Zinc Air battery discharged by low rate current discharge voltage profile has very flat pattern until end of voltage. But, when Zinc Air battery discharged by high rate current discharge voltage and capacity become lower. Therefore, we focused on effects of catalyst size in cathode. So we examined performance of zinc air batteries, average discharge voltage, capacity, energy, resistance. And we also obtained resistance by the GSM pulse discharge. So we have got optimum size of catalyst for Zinc Air battery.

  • PDF

Resistance Model for Reliability Analysis of Existing Steel Girder Bridges (강거더 교량의 신뢰성해석을 위한 저항모델 개발)

  • Eom, Jun Sik
    • Journal of Applied Reliability
    • /
    • v.13 no.4
    • /
    • pp.241-252
    • /
    • 2013
  • Because of financial and safety concerns, there are needs for more accurate prediction of bridge behavior. Underestimation of the bridge load carrying capacity can have serious economic consequences, as deficient bridges must be repaired or rehabilitated. Therefore, the knowledge of the actual bridge behavior under live load may lead to a more realistic calculation of the load carrying capacity and eventually this may allow for more bridges to remain in service with or without minor repairs. The presented research is focused on the reliability evaluation of the actual load carrying capacity of existing bridges based on the field testing. Seventeen existing bridges were tested under truck load to confirm their adequacy of reliability. The actual response of existing bridge structures under live load is measured. Reliability analysis is performed on the selected representative bridges designed in accordance with AASHTO codes for bridge component (girder). Bridges are first evaluated based on the code specified values and design resistance. However, after the field testing program, it is possible to apply the experimental results into the bridge reliability evaluation procedures. Therefore, the actual response of bridge structures, including unintentional composite action, partial fixity of supports, and contribution of nonstructural members are considered in the bridge reliability evaluation. The girder distribution factors obtained from the tests are also applied in the reliability calculation. The results indicate that the reliability indices of selected bridges can be significantly increased by reducing uncertainties without sacrificing the safety of structures, by including the result of field measurement data into calculation.

Computation of Plug Capacity for Open -Ended Piles Driven into Sands (모래지반에 타입된 개단말뚝의 관내토지지력 산정)

  • 백규호;이승래
    • Geotechnical Engineering
    • /
    • v.9 no.4
    • /
    • pp.7-16
    • /
    • 1993
  • Calibration chamber tests were conducted on open -ended model piles driven into dried siliceous sands with different soil conditions in order to clarify the effect of soil conditions on plug capacity, The model pile used in the test series was devised so that the bearing capacity of an open -ended pile could be measured out into three components , outside shaft resistance. plug resistance and tip resistance. Under several assumption, the value of earth pressure coefficient in the soil plug is calculated. It is gradually reduced with increase in the longitudinal distance from the pile tip. At the bottom of soil plug, it tends to decrease with increase in the penetration depth and relative density, and to increase with the increase of ambient pressure. In comparison of measured and calculated plug capacities using the one -dimensional analysis, we note that API code and one -dimensional analysis combined with P suggested by Randolph et al. and O'Neill et al. result in great underestimation of the plug capacity. Therefore, based on the test results, an empirical equation was suggested to compute the earth pressured coefficient to be used in the calculation of plug capacity using the one -dimensional analysis. and it produces proper plug capacities for all soil conditions.

  • PDF

Experimental Studies on PSC Airpit-Slab with Fire Resistance Panel under Static and Dynamic Loads (내화패널이 부착된 프리캐스트 PSC 풍도슬래브의 정적/동적하중에 관한 실험연구)

  • Kim, Tae Kyun;Bae, Jeong;Choi, Heon;Min, In Gi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4A
    • /
    • pp.245-253
    • /
    • 2012
  • In the longway tunnel and underground traffic road, the structure of transverse ventilation system is constructed by the airpit slab. In this study, the full scale specimens of the PSC airpit slab that attached fire resistance panel are performed the static and dynamic loading tests for evaluation of bending capacity. The first of all, it confirmed the evaluations about the fundamental efficiency of the fire resistance panel and PSC slab by the 3-point bending test and pull-off test. The tests are performed for evaluation of the bending resistance under ultimate static load and the bonded capacity under dynamic fatigue load. A fatigue test is performed for an investigation of the effect on wind pressure that is developed by transit of traffic. The damage or debonding on surface between fire resistance panel and PSC slab was not developed in dynamic fatigue load test, also the behavior of the specimens is very stable and the debonding of the fire resistance panel attached at the bottom surface of PSC slab was not developed in static load test, too. Therefore, the crack or debonding of the fire resistance panel will be not developed by external loads during the construction or completion of the precast fire resistance system.

Shear Resistance Capacity of Precast Post-tensioned Concrete Beam-Column Connection (프리캐스트 포스트텐션 콘크리트 보-기둥 접합부의 전단성능)

  • 조경호;이종규;최광호;김상식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.769-774
    • /
    • 2000
  • The first thing in developing precast post-tensioned concrete frame system verify the shear resistance capacity of the beam-column connection at which the transfer of member forces become discontinuous. Complying with the necessity of such experimental research, shear tests have been performed for six test specimens which were cast and cured at Dong-Ah Concrete Manufacturing Company and post-tensioning at Concrete Laboratory of Inha University. Shear key and magnitude of post-tensioned force are taken test variables. From the test results, it has been observed that the shear resistance of the specimens attained to higher values than those of theoritical calculations based on the shear friction with shear friction coefficient being 0.6.

  • PDF

Experimental study on axial response of different pile materials in organic soil

  • Canakci, Hanifi;Hamed, Majid
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.899-917
    • /
    • 2017
  • Sixty four tests were performed in a steel tank to investigate the axial responses of piles driven into organic soil prepared at two different densities using a drop hammer. Four different pile materials were used: wood, steel, smooth concrete, and rough concrete, with different length to diameter ratios. The results of the load tests showed that the shaft load capacity of rough concrete piles continuously increased with pile settlement. In contrast, the others pile types reached the ultimate shaft resistance at a settlement equal to about 10% of the pile diameter. The ratios of base to shaft capacities of the piles were found to vary with the length to diameter ratio, surface roughness, and the density of the organic soil. The ultimate unit shaft resistance of the rough concrete pile was always greater than that of other piles irrespective of soil condition and pile length. However, the ultimate base resistance of all piles was approximately close to each other.

Horizontal pullout capacity of a group of two vertical plate anchors in clay

  • Bhattacharya, Paramita;Kumar, Jyant
    • Geomechanics and Engineering
    • /
    • v.5 no.4
    • /
    • pp.299-312
    • /
    • 2013
  • The horizontal pullout capacity of a group of two vertical strip plate anchors, placed along the same vertical plane, in a fully cohesive soil has been computed by using the lower bound finite element limit analysis. The effect of spacing between the plate anchors on the magnitude of total group failure load ($P_{uT}$) has been evaluated. An increase of soil cohesion with depth has also been incorporated in the analysis. For a weightless medium, the total pullout resistance of the group becomes maximum corresponding to a certain optimum spacing between the anchor plates which has been found to vary generally between 0.5B and B; where B is the width of the anchor plate. As compared to a single plate anchor, the increase in the pullout resistance for a group of two anchors becomes greater at a higher embedment ratio. The effect of soil unit weight has also been analyzed. It is noted that the interference effect on the pullout resistance increases further with an increase in the unit weight of soil mass.

Experimental investigation on the shear capacity of RC dapped end beams and design recommendations

  • Wang, Quanfeng;Guo, Zixiong;Hoogenboom, Pierre C.J.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.2
    • /
    • pp.221-235
    • /
    • 2005
  • In this paper, the shear resistance behaviour of reinforced concrete (RC) dapped end beams is investigated by 24 tests until failure load. The main parameters considered are the dapped end height, the type and effective range to provided the stirrups and the bent form of the longitudinal reinforcement. The failure behaviour of dapped end beams is presented and some conclusions are given. Inclined stirrups and longitudinal bent reinforcement have more influence on the shear capacity than vertical stirrups. Additionally, the shear mechanism of dapped end beams is analysed. Relatively simple semi-empirical equations for shear strength have been derived based on the results of 22 dapped end beams. The predicted results are in close agreement with the experimental ones. Finally, some design suggestions for the ultimate shear strength of dapped end beams are presented.

Seismic behaviour of steel beam-to-column joints with column web stiffening

  • Ciutina, A.L.;Dubina, D.
    • Steel and Composite Structures
    • /
    • v.6 no.6
    • /
    • pp.493-512
    • /
    • 2006
  • The present paper summarizes the experimental research carried out at the "Politehnica" University of Timisoara, Romania, with the scope of investigating the influence of different column web stiffening solutions on the performance of beam-to-column joints of Moment Resisting Steel Frames. The response parameters, such as resistance, rigidity and ductility were examined. Five different types of panel web stiffening were compared with regard to a reference test. A quasi-linear relationship between the moment capacity and the total shear area of the web panel was observed from the experimental tests while the initial rigidity increased non-proportionally with the same area. Comparisons are presented of the experimental tests with the mathematical model developed by Krawinkler and with the model stipulated in Eurocode 3 Part 1.8. These comparisons showed a generally good agreement in the case of moment capacity, while the computed rigidities were always greater than the experimental rigidities.